NeuroKit2
Release 0.0.39

Official Documentation

Jun 28, 2020

CONTENTS

1 Introduction 3
1.1 Quick Example e e e e e 3
1.2 Installation L e e e e e e e 4
1.3 Contributing e e e e 4
1.4 Documentation v v v it e e e e e e e e e e e e e e 4
LS Citation oo 6
1.6 Physiological Data Preprocessing L e 6
1.7 Physiological Data Analysis e 13
1.8 Miscellaneousl e e e e 15
1.9 Popularity e e e e e e e e e e e e 21
LI0O NOES . . o o ot e 22
2 Authors 23
21 COreteam. v v vttt e e e e e e e 23
22 Contributors L 23
3 Installation 25
3.1 LPython o e e e e e e e e 25
32 2. NeuroKit. L 26
4 Get Started 27
4.1 Getfamiliar with Pythonin 10 minutes 27
42 WREre to Start o . e 35
5 Examples 37
5.1 Try the examples in your bBrowser o v v v v v i i i e e e e e e e e e e e 37
5.2 1. AnalysisParadigm e 37
5.3 2. Biosignal Processing e 38
5.4 3. Heartrate and heartcycles L 38
5.5 4. Electrodermal activityo e e e e e 39
5.6 5. Respiration rate and respiration cycles Lo o e e e 39
5.7 6. Muscle activity e e e e e e e e e e e e e e e 39
5.8 Simulate Artificial Physiological Signals L oo oo 40
5.9 Customize your Processing Pipeline L o oL o o 45
5.10 Event-related Analysis e e e e 50
5.11 Interval-related Analysis o o i e e e e e e e e e e e e 58
5.12 Analyze Electrodermal Activity (EDA) o e e e e 62
5.13 Analyze Respiratory Rate Variability (RRV) oo oo 64
5.14 ECG-Derived Respiration (EDR) Analysis L L. 69
5.15 Extract and Visualize Individual Heartbeats 71

5.16
5.17
5.18
5.19

How tocreate epochs o o i e e e e e e e e e
Complexity Analysis of Physiological Signals
Analyze Electrooculography EOG data (eye blinks, saccades,etc.)
Fit a function to a signal

6 Resources

6.1
6.2
6.3

Recording good quality signals e
What software for physiological signal processing
Additional Resources

7 Functions

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

ECG

EEG . . . e

Events

Epochs
StatiStICS . . v o v o e
Complexity
Miscellaneous

8 Benchmarks

8.1 Benchmarking of ECG Preprocessing Methods
8.2 References e e e e
9 Datasets
9.1 ECG (1000 hz) o i i e e e e e e e
9.2 ECG-pandas (3000 hz) o i i i e e e e
9.3 Event-related (4 events) e e e e e e e e e e e e
9.4 Restingstate (S min) o o i i e e e e e e e e e e e e e e e e e
9.5 Restingstate (8min) e e e e
10 Contributing
10.1 Understanding NeuroKit o o 0 e e e
10.2 Contributing guide L. e e e
10.3 Ideas for firstcontributions e e e e e e e e e e e e e e
Python Module Index
Index

103
103
104
106

107
107
124
128
135
146
157
163
165
187
190
191
194
202
234

239
239
250

251
251
251
251
252
252

255
256
258
265

267

269

NeuroKit2, Release 0.0.39

Welcome to NeuroKit’s documentation. Here you can find information and learn about Python, NeuroKit, Physiolog-
ical Signals and more.

You can navigate to the different sections using the left panel. We would recommend checking out the guides and
examples, where you can find tutorials and hands-on walkthroughs.

CONTENTS

NeuroKit2, Release 0.0.39

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

This package is the continuation of NeuroKit 1. It’s a user-friendly package providing easy access to advanced biosig-
nal processing routines. Researchers and clinicians without extensive knowledge of programming or biomedical signal
processing can analyze physiological data with only two lines of code.

NeuroKit2 |

The Python Toolbox for Neurophysiological Signal Processing

1.1 Quick Example

neurokit2 as nk

data nk.data ("bio_eventrelated_100hz")

processed_data, info nk.bio_process (ecg-data["ECG"], rsp-data["RSP"], eda-data["EDA
"], sampling_rate=100)

results nk.bio_analyze (processed_data, sampling rate=100)

And boom your analysis is done

https://neurokit2.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/neurokit2
https://pypi.python.org/pypi/neurokit2
https://pypi.python.org/pypi/neurokit2
https://travis-ci.org/neuropsychology/NeuroKit
https://codecov.io/gh/neuropsychology/NeuroKit
https://codeclimate.com/github/neuropsychology/NeuroKit/maintainability
https://github.com/neuropsychology/NeuroKit.py

NeuroKit2, Release 0.0.39

1.2 Installation

To install NeuroKit2, run this command in your terminal:

pip install neurokit2

If you’re not sure how/what to do, be sure to read our installation guide.

1.3 Contributing

NeuroKit2 is a collaborative project with a community of contributors with all levels of development expertise. Thus,
if you have some ideas for improvement, new features, or just want to learn Python and do something useful at the
same time, do not hesitate and check out the following guides:

* Understanding NeuroKit
* Contributing guide

¢ Ideas for first contributions

1.4 Documentation

Click on the links above and check out our tutorials:

1.4.1 General

* Get familiar with Python in 10 minutes
* Recording good quality signals

* What software for physiological signal processing

Install Python and NeuroKit

Included datasets

¢ Additional Resources

4 Chapter 1. Introduction

https://neurokit2.readthedocs.io/en/latest/installation.html
https://github.com/neuropsychology/NeuroKit/blob/master/LICENSE
https://github.com/neuropsychology/NeuroKit/actions
https://neurokit2.readthedocs.io/en/latest/contributing/understanding.html
https://neurokit2.readthedocs.io/en/latest/contributing/contributing.html
https://neurokit2.readthedocs.io/en/latest/contributing/first_contribution.html
https://neurokit2.readthedocs.io/en/latest/?badge=latest
https://neurokit2.readthedocs.io/en/latest/functions.html
https://neurokit2.readthedocs.io/en/latest/tutorials/index.html
https://neurokit2.readthedocs.io/_/downloads/en/latest/pdf/
https://mybinder.org/v2/gh/neuropsychology/NeuroKit/dev?urlpath=lab%2Ftree%2Fdocs%2Fexamples
https://gitter.im/NeuroKit/community
https://neurokit2.readthedocs.io/en/latest/tutorials/learnpython.html
https://neurokit2.readthedocs.io/en/latest/tutorials/recording.html
https://neurokit2.readthedocs.io/en/latest/tutorials/software.html
https://neurokit2.readthedocs.io/en/latest/installation.html
https://neurokit2.readthedocs.io/en/latest/datasets.html
https://neurokit2.readthedocs.io/en/latest/tutorials/resources.html

NeuroKit2, Release 0.0.39

1.4.2 Examples

» Simulate Artificial Physiological Signals

* Customize your Processing Pipeline

* Event-related Analysis

* Interval-related Analysis

* Analyze Electrodermal Activity (EDA)

* Analyze Respiratory Rate Variability (RRV)

* Extract and Visualize Individual Heartbeats

e Locate P, Q, S and T waves in ECG

* Complexity Analysis of Physiological Signals

* Analyze Electrooculography EOG data

* Fit a function to a signal
You can try out these examples directly in your browser.
Don’t know which tutorial is suited for your case? Follow this flowchart:

Do you have physiological data?

Yes! Nope.
What type? Do you want to have your data?
Yes! Nope.

ey e=d e I have several eventsor
(for instance, a resting-state) I want to know how to record it | just want to test or learn
N . phases for each subjects
recording) for each subject

The duration of each

event / phase israther | want to try with | want to test out functions
long (> 10 seconds) areal dataset on artifically simulated
signals
Yes! Nope.

\

Example: Example: Example: Tutorial: How to record Documentation: Example: Simulate
Interval-related analysis Event-related analysis How to create epachs physiological signals List of example datasets physiological signals

1.4. Documentation

https://neurokit2.readthedocs.io/en/latest/examples/simulation.html
https://neurokit2.readthedocs.io/en/latest/examples/custom.html
https://neurokit2.readthedocs.io/en/latest/examples/eventrelated.html
https://neurokit2.readthedocs.io/en/latest/examples/intervalrelated.html
https://neurokit2.readthedocs.io/en/latest/examples/eda.html
https://neurokit2.readthedocs.io/en/latest/examples/rrv.html
https://neurokit2.readthedocs.io/en/latest/examples/heartbeats.html
https://neurokit2.readthedocs.io/en/latest/examples/ecg_delineate.html
https://neurokit2.readthedocs.io/en/latest/tutorials/complexity.html
https://neurokit2.readthedocs.io/en/latest/examples/eog.html
https://neurokit2.readthedocs.io/en/latest/tutorials/fit_function.html
https://github.com/neuropsychology/NeuroKit/tree/master/docs/examples#cloud-based-interactive-examples
https://neurokit2.readthedocs.io/en/latest/?badge=latest

NeuroKit2, Release 0.0.39

1.5 Citation

1.6 Physiological Data Preprocessing

1.6.1 Simulate physiological signals

numpy as np
pandas as pd
neurokit2 as nk

ecg_simulate (duration=10, heart_rate-=70)
ppg_simulate (duration heart_rate-70)
rsp_simulate (duration=10, respiratory_rate=15)
eda_simulate (duration—10 scr_number—3)
emg_simulate (duration=1 burst_number-2)

data pd.DataFrame ({"ECG": ecg,
"PPG": ppg,
"RSP": rsp,
"EDA": eda,
"EMG": emg})

nk.signal_plot (data, subplots=True)

6 Chapter 1. Introduction

https://zenodo.org/badge/latestdoi/218212111
https://neurokit2.readthedocs.io/en/latest/authors.html

NeuroKit2, Release 0.0.39

17 — ECG
0 V_
— PPG
1 ~
0_ T T T T T T
0.5
—— RSP
0.0 A N
_05 L T T T T T T
2 .
— EDA
1 b T T T T T T
1] EMG
O_
_1 4

A o &

1.6.2 Electrodermal Activity (EDA/GSR)

eda nk.eda_simulate (duration=10, sampling_rate=250,

signals, info nk.eda_process (eda, sampling rate=250)

nk.eda_plot (signals,

sampling_rate=250)

%QQQ

scr_number

1.6. Physiological Data Preprocessing

https://neurokit2.readthedocs.io/en/latest/examples/simulation.html

NeuroKit2, Release 0.0.39

Electrodermal Activity (EDA)

Raw and Cleaned Signal

2.5 A Raw
—— Cleaned

2.0 A

1.5 A

1.0 4

Skin Conductance Response (SCR)

—— Phasic Component
0.5 SCR - Onsets
® SCR - Peaks
_—'\ SCR - Half recovery
0.0 A

Skin Conductance Level (SCL)

—— Tonic Component
1.6 1

1.4 A

0 500 1000 1500 2000 2500
Samples

1.6.3 Cardiac activity (ECG)

ecg nk.ecg_simulate (duration=15, sampling_rate=250, heart_rate=70)

signals, info nk.ecg_process (ecg, sampling rate=250)

nk.ecg_plot (signals, sampling_rate=2

8 Chapter 1. Introduction

https://neurokit2.readthedocs.io/en/latest/examples/eda.html

NeuroKit2, Release 0.0.39

Electrocardiogram (ECG)

Raw and Cleaned Signal Individual Heart Beats
1.0 Quality [1.04
Raw
0.5 —— Cleaned
R-peaks | 0.8 -
0.0 1
U' U' UW"
—0.5 1 0.64
—1.0 4
T T T T T T T T 0.4 1
0 2 4 6 8 10 12 14
Time (seconds
Wea(rt ﬁate)
0.2 1
= 72 1 —— Rate
Io% Mean
8 4
o 714 / 0.0
L
3
<
E 701 o= 10.2 1
g
2
© 69 4
@ 10.4 1
0 2 4 6 8 10 12 14 -0.2 0.0 0.2 0.4
Time (seconds) Time (seconds)

1.6.4 Respiration (RSP)

rsp nk.rsp_simulate (duration=60, sampling_rate=250, respiratory_rate=15)

signals, info nk.rsp_process (rsp, sampling rate=250)

nk.rsp_plot (signals, sampling_rate=2

1.6. Physiological Data Preprocessing 9

https://neurokit2.readthedocs.io/en/latest/examples/heartbeats.html

NeuroKit2, Release 0.0.39

Respiration (RSP)

Raw and Cleaned Signal

01 aw
—— Cleaned
0.0 - ® Inhalation Peaks
Exhalation Troughs
exhalation
b /

-0.5 inhalation

pel

Breathi'ng Rate

20.0 - —— Rate

17.5 A

15.0 A

1251

Breathing 'Amplitude

—— Amplitude
—== Mean

0 10 20 30 40 50 60
Time (seconds)

1.6.5 Electromyography (EMG)

emg nk.emg_simulate (duration=10, sampling_rate=250, burst_number-=3)

signal, info nk.emg_process (emg, sampling rate=250)

nk.emg_plot (signals, sampling rate=2

10 Chapter 1. Introduction

https://neurokit2.readthedocs.io/en/latest/examples/rrv.html

NeuroKit2, Release 0.0.39

Electromyography (EMG)

Raw and Cleaned Signal

Raw

1.0 Cleaned

0.5 A

0.0 A

—0.5 A

—1.0 A

Muscle Activation

0.012 A
Amplitude
0.010 4
0.008 -
0.006 -
0.004 -

0.002 4

0.000 ~

Time (seconds)

1.6.6 Photoplethysmography (PPG/BVP)

nk.ppg_simulate (duration=15, sampling_rate=250, heart_rate=70)

signals, info nk.ppg_process (ppg, sampling rate=250)

nk.ppg_plot (signals, sampling_rate=250)

1.6. Physiological Data Preprocessing 11

NeuroKit2, Release 0.0.39

Photoplethysmogram (PPG)

Raw and Cleaned Signal

1.5 Raw
—— Cleaned

1.0 1 ® Peaks

0.5 4

0.0 4

Time (secolnds)

Heart Rate
701 —— Rate
65 4 Mean
60 -
55 A —V
50 +
0 2 a 6 8 10 12 14

Time (seconds)

1.6.7 Electrooculography (EOG)

eog_signal nk.data ("eog_100hz")

signals, info nk.eog_process (eog_signal, sampling_rate=100)

plot nk.eog_plot (signals, sampling_rate=100)

12 Chapter 1. Introduction

NeuroKit2, Release 0.0.39

Electrooculography (EOG)

Raw and Cleaned Signal

Raw
< 0.0001 A —— Cleaned
z « ® Blinks
4 0.0000 ” ‘ WMW/
2
=
£ —0.00011

Time (séconds)

Blink Rate
80
—— Rate
9] Mean
5 60
£
€
g 40 A
g /\ N I\
= A V4
= 201 \Vj N
0 T T T T T T T
0 20 40 60 80 100 120

Time (seconds)

1.6.8 Electrogastrography (EGG)

Consider helping us develop it!

1.7 Physiological Data Analysis

The analysis of physiological data usually comes in two types, event-related or interval-related.

1.7. Physiological Data Analysis 13

https://neurokit2.readthedocs.io/en/latest/tutorials/contributing.html

NeuroKit2, Release 0.0.39

Physiological Signals

Event Markers

Signal type
— ECG
— RSP
— EDA

A Analysis type
Event-related Analysis
K Interval-related Analysis

_F

Y
N
S

0 10 15 20
Time
Event-related Features Interval-related Features
ECG Rate Changes: Min, Mean, Max, Time of Min and Max, Trend (Linear, Quadratic, R2) ECG Rate Characteristics: Mean, Amplitude
RSP Rate Changes: Min, Mean, Max, Time of Min and Max Heart Rate Variability (HRV) metrices
RSP Amplitude Measures: Min, Mean, Max Respiratory Rate Variability (RRV) metrices
ECG and RSP Phase Measures: Type (Inspiration/Expiration, Systole/Diastole), Completion Respiratory Sinus Arrhythmia (RSA) metrices
EDA Phasic Max Peak Amplitude Number of SCR Peaks
Number of SCRs and first SCR characteristics (Peak Amplitude, Risetime, Recovery time) Mean of SCR Peaks Amplitude

1.7.1 Event-related

This type of analysis refers to physiological changes immediately occurring in response to an event. For instance,
physiological changes following the presentation of a stimulus (e.g., an emotional stimulus) indicated by the dotted
lines in the figure above. In this situation the analysis is epoch-based. An epoch is a short chunk of the physiological
signal (usually < 10 seconds), that is locked to a specific stimulus and hence the physiological signals of interest
are time-segmented accordingly. This is represented by the orange boxes in the figure above. In this case, using
bio_analyze() will compute features like rate changes, peak characteristics and phase characteristics.

* Event-related example

1.7.2 Interval-related

This type of analysis refers to the physiological characteristics and features that occur over longer periods of time
(from a few seconds to days of activity). Typical use cases are either periods of resting-state, in which the activity is
recorded for several minutes while the participant is at rest, or during different conditions in which there is no specific
time-locked event (e.g., watching movies, listening to music, engaging in physical activity, etc.). For instance, this
type of analysis is used when people want to compare the physiological activity under different intensities of physical
exercise, different types of movies, or different intensities of stress. To compare event-related and interval-related
analysis, we can refer to the example figure above. For example, a participant might be watching a 20s-long short film
where particular stimuli of interest in the movie appears at certain time points (marked by the dotted lines). While
event-related analysis pertains to the segments of signals within the orange boxes (to understand the physiological
changes pertaining to the appearance of stimuli), interval-related analysis can be applied on the entire 20s duration to
investigate how physiology fluctuates in general. In this case, using bio_analyze() will compute features such as rate
characteristics (in particular, variability metrices) and peak characteristics.

14 Chapter 1. Introduction

https://neurokit2.readthedocs.io/en/latest/examples/eventrelated.html

NeuroKit2, Release 0.0.39

* Interval-related example

1.8 Miscellaneous

1.8.1 Heart Rate Variability (HRV)

¢ Compute HRYV indices
— Time domain: RMSSD, MeanNN, SDNN, SDSD, CVNN etc.

— Frequency domain: Spectral power density in various frequency bands (Ultra low/ULF, Very low/VLF,
Low/LF, High/HF, Very high/VHF), Ratio of LF to HF power, Normalized LF (LFn) and HF (HFn), Log
transformed HF (LnHF).

— Nonlinear domain: Spread of RR intervals (SD1, SD2, ratio between SD2 to SD1), Cardiac Sympathetic
Index (CSI), Cardial Vagal Index (CVI), Modified CSI, Sample Entropy (SampEn).

data

nk.data ("bio_resting_8min_100hz")

peaks, info nk.ecg_peaks (data["ECG"],

sampling_rate=100)

nk.hrv (peaks, sampling_rate=100,
HRV_RMSSD HRV_MeanNN
50O 507083 696.395349

show-True)

HRV_SDNN HRV_CVI HRV_CSI_Modified HRV_SampEn

953 .259931

Distribution of R-R intervals Poincaré Plot

1300 {
N sp1
SD2 °

1200 4

900 1000 1100 1200

R-R interva\sémsg: .
Power Spectral Density (PSD) for Frequency Domains 11004
35000 . ULF
Q@
. VLF S
30000 . LF _i °
— HF <
P & 1000 4
N 25000 . VHF o
3
£ 20000
°
£
£ 15000 900 ° o
S o 0
g o
v 10000 °
° °
°
5000 o, S0
800 -
0 —_—
0.1 0.2 0.3 0.4 0.5 800 900 1000 1100 1200 1300
Frequency (Hz) RRn(ms)

1.8. Miscellaneous

https://neurokit2.readthedocs.io/en/latest/examples/intervalrelated.html

NeuroKit2, Release 0.0.39

1.8.2 ECG Delineation

* Delineate the QRS complex of an electrocardiac signal (ECG) including P-peaks, T-peaks, as well as their onsets
and offsets.

ecg_signal nk.data (dataset="ecg_3000hz") ["ECG"']

_, rpeaks nk.ecg_peaks (ecg_signal, sampling_rate=3000)

signal, waves nk.ecg_delineate (ecg_signal, rpeaks, sampling_rate=3000, method="dwt",
show=True, show_type='all')

1.2 -
() ECG_T_Peaks
ECG_T_Onsets
ECG_T_Offsets
1.0) ECG_P_Peaks
ECG_P_Onsets
() ECG_P_Offsets
| ECG_R_Onsets
0.8 ECG_R_Offsets

0.6
0.4

0.2

0.0 — . | ‘ - | e
-/ | ‘/

1.8.3 Signal Processing

« Signal processing functionalities
— Filtering: Using different methods.
— Detrending: Remove the baseline drift or trend.

— Distorting: Add noise and artifacts.

original nk.signal_simulate (duration=6, frequency-1)

distorted nk.signal_distort (original,
noise_amplitude=0.1,

continues on next page

16 Chapter 1. Introduction

https://neurokit2.readthedocs.io/en/latest/examples/ecg_delineate.html

NeuroKit2, Release 0.0.39

(continued from previous page)

noise_frequency=[5,
powerline_amplitude
artifacts_amplitude
artifacts_number
linear drift-0.5)

2

cleaned nk.signal_detrend(distorted)
cleaned nk.signal_filter (cleaned, lowcut=0.5, highcut=1.5)

plot nk.signal_plot ([original, distorted, cleaned])

, —— Signall

1.25 A . Signal2

4\ [y — Signal3
1.00 4
0.75
0.50 -
0.25 A
0.00 -
—0.25 A
—0.50 -

0 1000 2000 3000 4000 5000 6000
Samples

1.8.4 Complexity (Entropy, Fractal Dimensions,...)

* Optimize complexity parameters (delay fau, dimension m, tolerance r)

signal nk.signal_simulate (frequency=[1, 3], noise=0.01, sampling_rate

parameters nk.complexity_ optimize (signal, show-=True)

1.8. Miscellaneous 17

NeuroKit2, Release 0.0.39

Otimization of Complexity Parameters

Optimization of Delay (tau)

o
o

—— Optimal delay: 6

Attractor

n
o

5.3

Mutual Information
«
IS

5241 - - - - :
0 20 40 60 80 100 0.6
Time Delay (tau) 0.4
Optimization of Dimension (d) ’
I
Lo p—t—t—t——t—o o o1, -2
5 08 —o— E3(d) 0F
& —— Optimal dimension: 5 =
So6 [
2 2
&
S 0.4
= .4
wo.2
0.0 0.6
2.5 5.0 75 10.0 12.5 15.0 17.5 0.8

Embedding dimension d
Optimization of Tolerence Threshold (r)

<

l:% —e— ApEn

> 0.15 —— Optimal r: 0.03

a

8 s

k=

w 0.10

o]

3

£ 0.05

o

g

< 0.00 1~ v v v T T r T r
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Tolerence threshold r

¢ Compute complexity features

— Entropy: Sample Entropy (SampEn), Approximate Entropy (ApEn), Fuzzy Entropy (FuzzEn), Multiscale
Entropy (MSE), Shannon Entropy (ShEn)

— Fractal dimensions: Correlation Dimension D2, ...

— Detrended Fluctuation Analysis

nk.entropy_sample (signal)
nk.entropy_approximate (signal)

1.8.5 Signal Decomposition

signal nk.signal_simulate (duration=10, frequency-1)

signal nk.signal_simulate (duration=10, frequency=3)

signal 3 np.linspace (0, 2, len(signal)

signal 2 nk.signal_simulate (duration=10, frequency=0.1, noise=0)

signal np.random.normal (0, 0.02, len(signal))

components nk.signal_decompose (signal, method='emd')
nk.signal_plot (components)

recomposed nk.signal_recompose (components, threshold-0
nk.signal_plot (recomposed)

18 Chapter 1. Introduction

https://neurokit2.readthedocs.io/en/latest/tutorials/complexity.html
https://neurokit2.readthedocs.io/en/latest/

NeuroKit2, Release 0.0.39

1.8.6 Signal Power Spectrum Density (PSD)

signal
nk.signal_simulate (frequency=30)

nk.signal_simulate (frequency-5)

multitaper
frequency=1

nk.signal_psd(signal,

welch nk.signal_psd(signal, method

frequency=100)

burg
order—15,

nk.signal psd(signal,
max_frequency=100)

fig, ax plt.subplots ()

ax.plot (welch["Fr
linewidth-2)

ax.plot (multitaper["Frequency"],
#00695C", linewidth=2)

ax.plot (burg["Frequency"],
linewidth=2)

equency"l],

burg["Power"],

set_title ("Power Spectrum Density
set_yscale('log')

set_xlabel ("Frequency (H
set_ylabel ("PSD
legend(loc

Z)")
(ms”~2/Hz)")
")

"upper right"

color
color

axvline (5,
axvline (2C
axvline (30,

"#689F
"#689

"#689

", linewidth
8", linewidth
8", linewidth

28
S0
F’)
F3

color

method="multitapers",

"welch"

method="burg",

welch["Power"],

multitaper["Power"

label

(PSD) ")

C

nk.signal_simulate (frequency-20)

show=Fal

min_frequency=1,

min_frequency-=1,

label="Welch", color="#CFD8DC",

], label="Multitaper", color="

"Burg", color="#0097AC",

ymax=0.95,
ymax
ymax

linestyle
linestyle
linestyle="--")

Hiill)

1.8. Miscellaneous

19

NeuroKit2, Release 0.0.39

Power Spectrum Density (PSD)

Welch
—— Multitaper
= Burg

10-10

10714

PSD (ms”~2/Hz)

10-18

10-22

10-26

10-30

Frequency (Hz)

1.8.7 Statistics

¢ Highest Density Interval (HDI)

np.random.normal (loc=0, scale=1, size=100000)

ci_min, ci_max nk.hdi(x, ci-0.95, show True)

20 Chapter 1. Introduction

https://neurokit2.readthedocs.io/en/latest/

NeuroKit2, Release 0.0.39

0.40 - B Cl95% [-1.92, 2.00]

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

1.9 Popularity

500 -

Downloads / Day

GitHub Stars
80

60 -

40 4

20 A

o
11 Dec 2019 06 Jan 2020 31 Jan 2020 25 Feb 2020 21 Mar 2020 16 Apr 2020 11 May 2020 05 Jun 2020

1.9. Popularity 21

https://pypi.python.org/pypi/neurokit2
https://github.com/neuropsychology/NeuroKit/stargazers
https://github.com/neuropsychology/NeuroKit/network
https://pypi.python.org/pypi/neurokit2

NeuroKit2, Release 0.0.39

1.10 Notes

The authors do not provide any warranty. If this software causes your keyboard to blow up, your brain to liquify, your
toilet to clog or a zombie plague to break loose, the authors CANNOT IN ANY WAY be held responsible.

22 Chapter 1. Introduction

CHAPTER
TWO

AUTHORS

Hint: Want to be a part of the project? Read how to contribute and join us!

2.1 Core team

e Dominique Makowski (Nanyang Technological University, Singapore)
e Tam Pham (Nanyang Technological University, Singapore)

e Zen Juen Lau (Nanyang Technological University, Singapore)

e Jan C. Brammer (Radboud University, Netherlands)

* Francois Lespinasse (Université de Montréal, Canada)

2.2 Contributors

e Hung Pham (Eureka Robotics, Singapore)

 Christopher Scholzel (THM University of Applied Sciences, Germany)
* Duy Le (Hubble, Singapore)

 Stavros Avramidis

 Tiago Rodrigues (IST, Lisbon)

» Mitchell Bishop (NINDS, USA)

e Robert Richer (FAU Erlangen-Niirnberg, Germany)

* Russell Anderson (La Trobe Institute for Molecular Science, Australia)

Thanks also to Gansheng Tan, Chuan-Peng Hu, @ucohen, Anthony Gatti, Julien Lamour, @renatosc, Nicolas
Beaudoin-Gagnon and @rubinovitz for their contribution in NeuroKit 1.

More details here.

23

https://neurokit2.readthedocs.io/en/latest/contributing/index.html
https://github.com/DominiqueMakowski
https://github.com/Tam-Pham
https://github.com/zen-juen
https://github.com/JanCBrammer
https://github.com/sangfrois
https://github.com/hungpham2511
https://github.com/CSchoel
https://github.com/duylp
https://github.com/purpl3F0x
https://github.com/TiagoTostas
https://github.com/Mitchellb16
https://github.com/richrobe
https://github.com/rpanderson
https://github.com/GanshengT
https://github.com/hcp4715
https://github.com/ucohen
https://github.com/gattia
https://github.com/lamourj
https://github.com/renatosc
https://github.com/Fegalf
https://github.com/Fegalf
https://github.com/rubinovitz
https://github.com/neuropsychology/NeuroKit.py
https://github.com/neuropsychology/NeuroKit/graphs/contributors

NeuroKit2, Release 0.0.39

24

Chapter 2. Authors

CHAPTER
THREE

INSTALLATION

Hint: Spotted a typo? Would like to add something or make a correction? Join us by contributing (see these guides).

3.1 1. Python

3.1.1 Windows
Winpython

The advantage of Winpython is its portability (i.e., works out of a folder) and default setup (convenient for science).
1. Download a non-zero version of Winpython

Install it somewhere (the desktop is a good place). It creates a folder called WPyXX-xxxx

In the WPyXX-xxxx folder, open WinPython Command Prompt.exe

Runpip install https://github.com/neuropsychology/NeuroKit/zipball/master

A

Start Spyder.exe

Miniconda or Anaconda

The difference between the two is straightforward, miniconda is recommended if you don’t have much storage space
and you know what you want to install. Similar to Winpython, Anaconda comes with a base environment, meaning
you have basic packages pre-installed.

1. Download and install Miniconda or Anaconda (make sure the Anaconda3 directory is similar to this: C:\
Users\<username>\anaconda3\)

2. Open the Anaconda Prompt (search for it on your computer)

3. Run conda help to see your options

Note: There should be a name in parentheses before your user’s directory, e.g. (base) C:\Users\
<yourusername>. That is the name of your computing environment. By default, you have a base
environment. We don’t want that, so create an environment.

4. Run conda env create <yourenvname>; activate it every time you open up conda by running conda
activate <yourenvname>

25

https://neurokit2.readthedocs.io/en/latest/contributing/index.html
http://winpython.github.io/
https://www.anaconda.com/download/

NeuroKit2, Release 0.0.39

5. Is pip (package installer for python) installed in this env? Prompt Anaconda using pip list it’ll show you
all the packages installed in that conda env

(base) C:\Users\sangfrois>conda env list
conda environments:

base * C:\Users\sangfrois\Documents\Computation\Anaconda3

dipy_tracks C:\Users\sangfrois\Documents\Computation\Anaconda3\envs\dipy tracks
dynamicParEnv C:\Users\sangfrois\Documents\Computation\Anaconda3\envs\dynamicParEnv
sangfroisEnv C:\Users\sangfrois\Documents\Computation\Anaconda3\envs\sangfroisEnv

(base) C:\Users\sangfrois>conda create shortname

3.1.2 Mac OS

1. Install Anaconda
Open the terminal
Run source activate root

Runpip install neurokit?2

A

Start Spyder.exe

3.2 2. NeuroKit

If you already have python, you can install NeuroKit by running this command in your terminal:

pip install neurokit2

This is the preferred method to install NeuroKit, as it will always install the most stable release. It is also possible to
install it directly from github:

pip install https://github.com/neuropsychology/neurokit/zipball/master

Hint: Enjoy living on the edge? You can always install the latest dev branch to access some work-in-progress features
using pip install https://github.com/neuropsychology/neurokit/zipball/dev

If you don’t have pip installed, this Python installation guide can guide you through the process.

26 Chapter 3. Installation

https://www.anaconda.com/download/
https://www.youtube.com/watch?time_continue=59&v=gk2CgkURkgY
https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/

CHAPTER
FOUR

GET STARTED

Contents:

4.1 Get familiar with Python in 10 minutes

Hint: Spotted a typo? Would like to add something or make a correction? Join us by contributing (see these guides).

You have no experience in computer science? You are afraid of code? You feel betrayed because you didn’t expect to
do programming in psychology studies? Relax! We got you covered.

This tutorial will provide you with all you need to know to dive into the wonderful world of scientific programming.
The goal here is not become a programmer, or a software designer, but rather to be able to use the power of program-
ming to get scientific results.

4.1.1 Setup

The first thing you will need is to install Python on your computer (we have a tutorial for that). In fact, this includes
two things, installing Python (the language), and an environment to be able to use it. For this tutorial, we will assume
you have something that looks like Spyder (called an IDE). But you can use jupyter notebooks, or anything else, it
doesn’t really matter.

There is one important concept to understand here: the difference between the CONSOLE and the EDITOR. The
editor is like a cooking table where you prepare your ingredients to make a dish, whereas the console is like the oven,
you only open it to put the dish in it and get the result.

Most of the code that you will write, you will write it in the editor. It’s basically a text editor (such as notepad), except
that it automatically highlights the code. Importantly, you can directly execute a line of code (which is equivalent to
copy it and paste it the console).

For instance, try writing 1+1 somewhere in the file in the editor pane. Now if select the piece of code you just wrote,
and press F9 (or CTRL + ENTER), it will execute it.

27

https://neurokit2.readthedocs.io/en/latest/contributing/index.html
https://neurokit2.readthedocs.io/en/latest/installation.html
https://www.spyder-ide.org/
https://jupyter.org/
https://www.guru99.com/python-ide-code-editor.html

NeuroKit2, Release 0.0.39

As a result, you should see in the console the order that you gave and, below, its output (which is 2).

Now that the distinction between where we write the code and where the output appears is clear, take some time to
explore the settings and turn the editor background to BLACK. Why? Because it’s more comfortable for the eyes, but
most importantly, because it’s cool .

Editor - C:\Users\domma'\Desktop\youreawizard.py & X |Help
[youreawizard.py £ Source|Console | Object|

Here you can get help of any objact by pressing C

Help can alse be shown automatically after writing

Hep | Varisbleexplorer File explorer

IPython console
[console2/a B
Python : , Dec 18 2019, 23:11:46) [MSC v.1916 64 bit (AMD64)]
Type "copyri ts" or icense" for more information.

IPython 7

Congrats, you’ve become a programmer, a wizard of the modern times.

You can now save the file (CTRL + S), which will be saved with a . py extension (i.e., a Python script). Try closing
everything and reopening this file with the editor.

28 Chapter 4. Get Started

NeuroKit2, Release 0.0.39

4.1.2 Variables

The most important concept of programming is variables, which is a fancy name for something that you already
know. Do you remember, from your mathematics classes, the famous x, this placeholder for any value? Well, x was a
variable, i.e., the name refering to some other thing.

Hint: Despite to what I just said, a variable in programming is not equivalent to a variable in statistics, in which
it refers to some specific data (for instance, age is variable and contains multiple observations). In programming, a
variable is simply the name that we give to some entity, that could be anything.

We can assign a value to a variable using the = sign, for instance:

Once we execute these two lines, Python will know that x refers to 2, and y to 3. We can now write:
print (x V)

Which will print in the console the correct result.

@ spyder (Python 3.8)
File Edit Search Source Run Debug Consoles Projects Tools View Help

O Ee pOBEDPG HMEE=E=E=n N A [ciusersicomms
Editor - C\Users\demma\Desktop\youreawizard.py 8 X || Help
[youreawizard.py B £ Source Editor Ob]e:t‘pnnt

Definition : print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=t

Type : Function of builtins module

Prints the values to a stream, or to sys.stdout by default. Optional keyword arguments: file: ¢

Help Wariable explorer File explorer

IPython consale
[Console 4/a B
Python 3.8.1 .1:1b293b6] 11:46) [MSC v.1914
Type y r cense” for more information.
IPython 7.10.2 — An enhanced Interactive Python.

Popul g the interactive namespace from numpy and matplotlib

3
print(x-+-y)

(x +y)

We can also store the output in a third variable:

X
Yy

anothervariable X %
print (anothervariable)

4.1. Get familiar with Python in 10 minutes 29

NeuroKit2, Release 0.0.39

4.1.3 Variables and data types

The next important thing to have in mind is that variables have types. Basic types include integers (numbers without
decimals), floats (numbers with decimals), strings (character text) and booleans (True and False). Depending on
their type, the variables will not behave in the same way. For example, try:

print (1 2)
print(lllll "2")

What happened here? Well, quotations ("I am quoted") are used to represent strings (i.e., text). So in the
second line, the numbers that we added were not numbers, but text. And when you add strings together in Python, it
concatenates them.

One can change the type of a variable with the following:

Also, here I used the hashtag symbol to make comments, i.e., writing stuff that won’t be executed by Python. This is
super useful to annotate each line of your code to remember what you do - and why you do it.

Types are often the source of many errors as they usually are incompatible between them. For instance, you cannot add
anumber (int or £loat) with a character string. For instance, try running 3 + "a", it will throw a TypeError.

4.1.4 Lists and dictionnaries

Two other important types are lists and dictionnaries. You can think of them as containers, as they contain multiple
variables. The main difference between them is that in a list, you access the individual elements that it contains by
its order (for instance, “give me the third one”), whereas in a dictionary, you access an element by its name (also
known as key), for example “give me the element named A”.

A list is created using square brackets, and a dictionary using curly brackets. Importantly, in a dictionary, you must
specify a name to each element. Here’s what it looks like:

mylist [1, 2, 3]

mydict {"a": 1, "B":

Keep in mind that there are more types of containers, such as arrays and dataframes, that we will talk about later.

4.1.5 Basic indexing

There’s no point in storing elements in containers if we cannot access them later on. As mentioned earlier, we can
access elements from a dictionary by its key within square brackets (note that here the square brackets don’t mean
list, just mean within the previous container).

mydict {"a": 1, "B":

X mydict ["B"]
print (x)

Exercice time! If you have followed this tutorial so far, you should be able to guess what the following code will
output:

30 Chapter 4. Get Started

NeuroKit2, Release 0.0.39

mydict {"in:
x str(l 1)

y mydict [x]
print (y)

Answer: If you guessed 42, you’re right, congrats! If you guessed 7, you have likely confused the variable named x
(which represents 1+1 converted to a character), with the character "x". And if you guessed 0... what is wrong with
you?

4.1.6 Indexing starts from 0

As mentioned earliers, one can access elements from a list by its order. However, and there is very important
to remember (the source of many beginner errors), in Python, the order starts from 0. That means that the first
element is the Oth.

So if we want the 2nd element of the list, we have to ask for the 1th:

mylist = [1, 2, 3]

X mylist[1]
print (x)

4.1.7 Control flow (if and else)

One important notion in programming is control flow. You want the code to do something different depending on a
condition. For instance, if x is lower than 3, print “lower than 3”. In Python, this is done as follows:

X

if x

print ("lower than 3")

One very important thing to notice is that the if statement corresponds to a “chunk” of code, as signified by the colon
:. The chunk is usually written below, and has to be indented (you can ident a line or a chunk of code by pressing the
TAB key).

What is identation?

indentation

This identation must be consistent: usually one level of identation corresponds to 4 spaces. Make sure you respect that
throughout your script, as this is very important in Python. If you break the rule, it will throw an error. Try running
the following:

if 2
print ("lower than 3")

Finally, if statements can be followed by else statements, which takes care of what happens if the condition is not
fullfilled:

print ("lower")

print ("higher")

4.1. Get familiar with Python in 10 minutes 31

NeuroKit2, Release 0.0.39

Again, note the indentation and how the else statement creates a new idented chunk.

4.1.8 For loops

One of the most used concept is loops, and in particular for loops. Loops are chunks of code that will be run several
times, until a condition is complete.

The for loops create a variable that will successively take all the values of a list (or other iterable types). Let’s look
at the code below:

for var [1,

print (var)

Here, the for loop creates a variable (that we named var), that will successively take all the values of the provided list.

4.1.9 Functions

Now that you know what a variable is, as well as the purpose of little things like if, else, for, etc., the last most common
thing that you will find in code are function calls. In fact, we have already used some of them! Indeed, things like
print (), str() and int () were functions. And in fact, you’ve probably encountered them in secondary school
mathematics! Remember f{x)?

One important thing about functions is that most of the time (not always though), it takes something in, and returns
something out. It’s like a factory, you give it some raw material and it outputs some transformed stuff.

For instance, let’s say we want to transform a variable containing an integer into a character string:

X

X str(x)
print (x)

As we can see, our str () function takes x as an input, and outputs the transformed version, that we can collect using
the equal sign = and store in the x variable to replace its content.

Another useful function is range (), that creates a sequence of integers, and is often used in combination with for
loops. Remember our previous loop:

mylist [1r, 2, 31

for var mylist:
print (var)

We can re-write it using the range () function, to create a sequence of length 3 (which will be from 0 to 2; remember
that Python indexing starts from 0!), and extracting and printing all of the elements in the list:

mylist [1, 2, 3]

for 1 range (3) :
print (mylist[i])

It’s a bit more complicated than the previous version, it’s true. But that’s the beauty of programming, all things can be
done in a near-infinite amount of ways, allowing for your creativity to be expressed.

Exercice time! Can you try making a loop so that we add :code: / to each element of the list?

Answer:

32 Chapter 4. Get Started

NeuroKit2, Release 0.0.39

mylist [1, 2, 3]
for 1 range (3) :

mylist[i] mylist[i]
print (mylist)

If you understand what happened here, in this combination of lists, functions, loops and indexing, great! You are ready
to move on.

4.1.10 Packages

Interestingly, Python alone does not include a lot of functions. And that’s also its strength, because it allows to
easily use functions developped by other people, that are stored in packages (or modules). A package is a collection
of functions that can be downloaded and used in your code.

One of the most popular package is numpy (for NUM*rical *PY*thon), including a lot of functions for maths and
scientific programming. It is likely that this package is already **installed* on your Python distribution. However,
installing a package doesn’t mean you can use it. In order to use a package, you have to import it (load it) in your
script, before using it. This usually happens at the top of a Python file, like this:

Once you have imported it (you have to run that line), you can use its functions. For instance, let’s use the function to
compute square roots included in this package:

numpy . sgrt (9)
print (x)

You will notice that we have to first write the package name, and then a dot, and then the sgrt () function. Why is
it like that? Imagine you load two packages, both having a function named sqrt (). How would the program know
which one to use? Here, it knows that it has to look for the sqrt () function in the numpy package.

You might think, it’s annoying to write the name of the package everytime, especially if the package name is long.
And this is why we sometimes use aliases. For instance, numpy is often loaded under the shortcut np, which makes it
shorter to use:

numpy as np

X np.sqrt (9)
print (x)

4.1.11 Lists vs. vectors (arrays)

Packages can also add new types. One important type avalable through numpy is arrays.

In short, an array is a container, similar to a list. However, it can only contain one type of things inside (for instance,
only floats, only strings, etc.) and can be multidimensional (imagine a 3D cube made of little cubes containing a
value). If an array is one-dimensional (like a list, i.e., a sequence of elements), we can call it a vector.

A list can be converted to a vector using the array() function from the numpy package:

mylist [1r, 2, 31
myvector np.array (mylist)

print (myvector)

4.1. Get familiar with Python in 10 minutes 33

NeuroKit2, Release 0.0.39

In signal processing, vectors are often used instead of lists to store the signal values, because they are more efficient
and allow to do some cool stuff with it. For instance, remember our exercice above? In which we had to add :code:" 1" to
each element of the list? Well using vectors, you can do this directly like this:

myvector np.array ([1,

myvector myvector 1
print (myvector)

Indeed, vectors allow for vectorized operations, which means that any operation is propagated on each element of the
vector. And that’s very useful for signal processing :)

4.1.12 Conditional indexing

Arrays can also be transformed in arrays of booleans (True or False) using a condition, for instance:

myvector np.array ([1l, 2,

vector_of_bools myvector
print (vector_of_bools)

This returns a vector of the same length but filled with True (if the condition is respected) or False otherwise. And
this new vector can be used as a mask to index and subset the original vector. For instance, we can select all the
elements of the array that fulfills this condition:

myvector np.array ([1,
mask myvector 2
subset myvector [mask]
print (subset)

myvector np.array ([1,

myvector [myvector 2]
print (myvector)

Here we assigned a new value 6 to all elements of the vector that respected the condition (were inferior or equal to 2).

4.1.13 Dataframes

If you’ve followed everything until now, congrats! You’re almost there. The last important type that we are going
to see is dataframes. A dataframe is essentially a table with rows and columns. Often, the rows represent different
observations and the columns different variables.

Dataframes are available in Python through the pandas package, another very used package, usually imported under
the shortcut pd. A dataframe can be constructed from a dictionnay: the key will become the variable nate, and the
list or vector associated will become the variable values.

pandas as pd

data {"Variablel": varl, "Variable2": var2}

(continues on next page)

34 Chapter 4. Get Started

NeuroKit2, Release 0.0.39

(continued from previous page)

data pd.DataFrame. from_dict (data)

print (data)

This creates a dataframe with 3 rows (the observations) and 2 columns (the variables). One can access the variables
by their name:

print (data["Variablel"])

Note that Python cares about the case: tHiS is not equivalent to ThIs. And pd.DataFrame has to be written with
the D and F in capital letters. This is another common source of beginner errors, so make sure you put capital letters
at the right place.

4.1.14 Reading data

Now that you know how to create a dataframe in Python, note that you also use pandas to read data from a file (.csv,
excel, etc.) by its path:

pandas as pd

data pd.read_excel ("C:/Users/Dumbledore/Desktop/myfile.x1lsx")
print (data)

Additionally, this can also read data directly from the internet! Try running the following:

pandas as pd

data pd.read_csv ("https://raw.githubusercontent.com/neuropsychology/NeuroKit/master/
data/bio_eventrelated_100hz.csv")
print (data)

4.1.15 Next steps

Now that you know the basis, and that you can distinguish between the different elements of Python code (functions
calls, variables, etc.), we recommend that you dive in and try to follow our other examples and tutorials, that will show
you some usages of Python to get something out of it.

4.2 Where to start

Hint: This page is under construction. Consider helping us developing it by contributing.

Here are a few examples that a good for starting with NeuroKit.

* Event-related Analysis

4.2. Where to start 35

https://neurokit2.readthedocs.io/en/latest/contributing/index.html
https://neurokit2.readthedocs.io/en/latest/examples/eventrelated.html

NeuroKit2, Release 0.0.39

36

Chapter 4. Get Started

CHAPTER
FIVE

EXAMPLES

The notebooks in this repo are meant to illustrate what you can do with NeuroKit. It is supposed to reveal how easy it
has become to use cutting-edge methods, and still retain the liberty to change a myriad of parameters. These notebooks
are organized in different sections that correspond to NeuroKit’s modules.

5.1 Try the examples in your browser

Hint: Spotted a typo? Would like to add something or make a correction? Join us by contributing (see this tutorial).

The notebooks in this repo are meant to illustrate what you can do with NeuroKit. It is supposed to reveal how easy it
has become to use cutting-edge methods, and still retain the liberty to change a myriad of parameters. These notebooks
are organized in different sections that correspond to NeuroKit’s modules.

You are free to click on the link below to run everything... without having to install anything! There you’ll find a
Jupyterlab with notebooks ready to fire up. If you need help figuring out the interface. (The secretis shift+enter).

5.2 1. Analysis Paradigm

Examples dedicated to specific analysis pipelines, such as for event related paradigms and resting state.

Ideas of examples to be implemented: > Preprocessing feature signals for machine learning Analysis > EEG + physi-
ological activity during resting state > Comparing interval related activity from different “mental states” (e.g. medita-
tion, induced emotion vs. neutral)

5.2.1 a) Event-related paradigm

eventrelated.ipynb

Description This notebook guides you through the initialization of events and epochs creation. It shows you how
easy it is to compare measures you’ve extracted from different conditions.

37

https://neurokit2.readthedocs.io/en/latest/contributing/contributing.html
https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://mybinder.org/v2/gh/neuropsychology/NeuroKit/dev?urlpath=lab%2Ftree%2Fdocs%2Fexamples

NeuroKit2, Release 0.0.39

5.2.2 b) Interval-related paradigm

intervalrelated. ipynb

Description Breaks down the step to extract characteristics of physiological activity for epochs of a minimum of a
couple minutes

5.3 2. Biosignal Processing

Examples dedicated to processing pipelines, and measure extraction of multiple signals at a time. What’s your thing ?
How do you do it ?

Ideas of examples to be implemented:

Batch preprocessing of multiple recordings
PPG processing for respiration temperature

EMG overview (so many muscles to investigate)

add yours

5.3.1 a) Custom processing pipeline

custom.ipynb

Description This notebook breaks down the default NeuroKit pipeline used in _process () functions. It guides
you in creating your own pipeline with the parameters best suited for your signals.

5.4 3. Heart rate and heart cycles

Examples dedicated to the analysis of ECG, PPG and HRV time series. Are you a fan of the Neurovisceral integration
model? How would you infer a cognitive or affective process with HRV ? How do you investigate the asymmetry of
cardiac cycles ?

Ideas of examples to be implemented:

Benchmark different peak detection methods
resting state analysis of HRV

Comparing resting state movie watching
add yours

5.4.1 a) Detecting components of the cardiac cycle

ecg_delineation.ipynb

Description This notebook illustrate how reliable the peak detection is by analyzing the morphology of each cardiac
cycles. It shows you how P-QRS-T components are extracted.

38 Chapter 5. Examples

https://www.researchgate.net/publication/285225132_Heart_Rate_Variability_A_Neurovisceral_Integration_Model
https://www.researchgate.net/publication/285225132_Heart_Rate_Variability_A_Neurovisceral_Integration_Model

NeuroKit2, Release 0.0.39

5.4.2 b) Looking closer at heart beats

heartbeats.ipynb

Description This notebook gives hints for a thorough investigation of ECG signals by visualizing individual heart
beats, interactively.

5.5 4. Electrodermal activity

Examples dedicated to the analysis of EDA signals.

Ideas of examples to be implemented:

Pain experiments

Temperature
add yours

5.5.1 a) Extracting information in EDA

eda.ipynb

Description This notebook goes at the heart of the complexity of EDA analysis by break down how Tonic and Phasic
components are extracted from the signal.

5.6 5. Respiration rate and respiration cycles

Examples dedicated to the analysis of respiratory signals, i.e. as given by a belt, or eventually, with PPG.

Ideas of examples to be implemented:

Meditation experiments

Stress regulation
add yours

5.6.1 a) Extracting Respiration Rate Variability metrics

rrv.ipynb

Description This notebook breaks down the extraction of variability metrics done by rsp_rrv ()

5.7 6. Muscle activity

Examples dedicated to the analysis of EMG signals.

Ideas of examples to be implemented:

5.5. 4. Electrodermal activity 39

NeuroKit2, Release 0.0.39

5.8 Simulate Artificial Physiological Signals

Neurokit’s core signal processing functions surround electrocardiogram (ECG), respiratory (RSP), electrodermal ac-
tivity (EDA), and electromyography (EMG) data. Hence, this example shows how to use Neurokit to simulate these
physiological signals with customized parametric control.

: import

: # Load NeuroKit and other useful packages

import
import
import
import
import

[}

% inline

= # Bigger images

5.8.1 Cardiac Activity (ECG)

With ecg_simulate (), you can generate an artificial ECG signal of a desired length (in this case here,
duration=10), noise, and heart rate. As you can see in the plot below, ecg50 has about half the number of heart
beats than ecg100, and ecg50 also has more noise in the signal than the latter.

: # Alternate heart rate and noise levels

Visualize

40 Chapter 5. Examples

NeuroKit2, Release 0.0.39

104 | ECG_50
| |
05 ﬁ | | \
o AN A u“Mw,f_J\‘/’“u\ LA
o ﬁ@l aﬂ“ﬁl @““I #@I xgﬁﬁq.'

Samples

You can also choose to generate the default, simple simulation based on Daubechies wavelets, which roughly approx-
imates one cardiac cycle, or a more complex one by specifiying method="ecgsyn".

: # Alternate methods

Visualize

5.8. Simulate Artificial Physiological Signals 41

NeuroKit2, Release 0.0.39

6 —— ECG_Simple
. |
i
o =l b e ol
| f
2
101 | ECG_Complex
0.5 1
| / NN n " f fi fi P P
IIFII Iﬂll III III'- / 'II II' A |II II| fi /\ h III I' 'nq }II III 'ﬂ'| -II II| f |'Il|||| i Irl', |."| ,l|I \ |I"| l)" II'I,‘
TR AN (el A FAWL| TAWA! /A L il A TAWA| FAWA PR R
| [0 B [et 0 R
) L o & & o
Samples

5.8.2 Respiration (RSP)

To simulate a synthetic respiratory signal, you can use rsp_simulate () and choose a specific duration and breath-
ing rate. In this example below, you can see that rsp7 has a lower breathing rate than rsp/5. You can also decide
which model you want to generate the signal. The simple rspl5 signal incorporates method = "sinusoidal"
which approximates a respiratory cycle based on the trigonometric sine wave. On the other hand, the complex rspl5
signal specifies method = "breathmetrics" which uses a more advanced model by interpolating inhalation
and exhalation pauses between each respiratory cycle.

: # Simulate

Il

Il
NN
o o
Il
[
(€]

|

o
|

Visualize respiration rate

42 Chapter 5. Examples

NeuroKit2, Release 0.0.39

05 - —— RSPT
0.0 \
05 1

05 ; /\.\) /-'\ ™\ .I’__f"\\ / —— RSP15_simple
00{ / \ / \ ."/ i'_ / 1!"1. / \ /

\ _ / \ / \ / \ /
os] \/ \/ \/ \/ _/

05 A

— R5P15_complex

S

—0.5 A1

o O @ P S

5.8.3 Electromyography (EMG)

Now, we come to generating an artificial EMG signal using emg_simulate (). Here, you can specify the number
of bursts of muscular activity (n_bursts) in the signal as well as the duration of the bursts (duration_bursts).
As you can see the active muscle periods in EMG2_Longer are greater in duration than that of EMG2, and EMG5
contains more bursts than the former two.

: # Simulate

S ke =1(=2 =1.(
= ke =10 =2 -1.5

Visualize

5.8. Simulate Artificial Physiological Signals 43

NeuroKit2, Release 0.0.39

14 — EMG2
il . * . “ -
-1 -
T T T T T T
1 — EMGZ_Longer
) . . ” “ -)
-1 -
T T T T T T
1
0
-1 -

Samples

5.8.4 Electrodermal Activity (EDA)

Finally, eda_simulate () can be used to generate a synthetic EDA signal of a given duration, specifying the
number of skin conductance responses or activity ‘peaks’ (n_scr) and the drift of the signal. You can also modify
the noise level of the signal.

: # Simulate

= 5 =10 =1 =-0.01 =0.05
= 5 =10 =3 ==0.0T1 =0.01
= 5 =10 =3 =-0.1 =0.01

Visualize

44 Chapter 5. Examples

NeuroKit2, Release 0.0.39

207 — EDAl
15 -
10 1
T T T T T T
2.0 1 I'ﬁ"'-._ II'-"-._I. II"L‘\._‘. EDAS
I % | "\ | "-__‘
| "\._.‘ | \\ | b
i | | '
15 , ___x .' w“‘"m .' \\
) "y -
| ""-._‘__-__‘_ | ___‘__‘-\- | .-""'L__._F
10 { e/ ““‘f —— T
T T T T T
2
— EDA3_Longer
1 -
T T T T T
')) 'l) 3
.ﬂaﬁ- @‘} H}ﬁ #ﬁ- Xﬁﬁﬁ
Samples

5.9 Customize your Processing Pipeline

While NeuroKit is designed to be beginner-friendly, experts who desire to have more control over their own processing
pipeline are also offered the possibility to tune functions to their specific usage. This example shows how to use

NeuroKit to customize your own processing pipeline for advanced users taking ECG processing as an example.

: # Load NeuroKit and other useful packages

import

import

import

import

% inline

% notebook

= # Bigger images

5.9. Customize your Processing Pipeline

45

NeuroKit2, Release 0.0.39

5.9.1 The Default NeuroKit processing pipeline

NeuroKit provides a very useful set of functions, «_process () (e.g. ecg_process (), eda_process(),
emg_process (), ...), which are all-in-one functions that cleans, preprocesses and processes the signals. It in-
cludes good and sensible defaults that should be suited for most of users and typical use-cases. That being said, in
some cases, you might want to have more control over the processing pipeline.

This is how ecg_process () is typically used:

: # Simulate ecg signal (you can use your own one)

= o =15 =1000 =80

Default processing pipeline
= c =1000

Visualize

Electrocardiogram (ECG)

Raw and Cleaned Signal

Quality
10 Raw
—— Cleaned
o5 4 R-peaks
0.0 4
-0.5
-1.0 4
T T T T amples | T T T
Heart Rate
82.0 4 — Rate
Mean
81.5 4
E 8101
2
o 4
4 805
£
£ B0.0 4
T
o 79.5
2
2 79.0
78.5 4
?Bu 1 T T T T T T T T
o 2000 4000 6000 8000 10000 12000 14000
Samples

46 Chapter 5. Examples

NeuroKit2, Release 0.0.39

5.9.2 Building your own process () function

Now, if you look at the code of “ecg_process () <https://github.com/neuropsychology/NeuroKit/blob/master/
neurokit2/ecg/ecg_process.py#L49>"__ (see here for how to explore the code), you can see that it is in fact very
simple.

It uses what can be referred to as “mid-level functions”, such as ecg_clean (), ecg_peaks (), ecg_rate ()
etc.

This means that you can basically re-create the ecg_process () function very easily by calling these mid-level
functions:

[22]: # Define a new function

Do processing

Prepare output

You can now use this function as you would do with ecg_process ().

[23]: # Process the signal using previously defined function

Visualize

5.9. Customize your Processing Pipeline 47

https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_process.py#L49
https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_process.py#L49
https://neurokit2.readthedocs.io/en/latest/tutorials/understanding.html

NeuroKit2, Release 0.0.39

Electrocardiogram (ECG)

Raw and Cleaned Signal

Quality
101 Raw
= Cleaned
s 4 R-peaks
0.0 4
-0.5
=1.0 4
T T T T Samples | T T T
Heart Rate
82.0 1 Rate
Mean
B1.5 4
E 81.0 4 ~
a
¥ 805 \
=
E B0.0 - P
|
n 79.5 1
m
5 79.0
78.5 4
?80 1 T T T T T T T T
o 2000 4000 6000 8000 10000 12000 14000
Samples

5.9.3 Changing the processing parameters

Now, you might want to ask, why would you re-create the processing function? Well, it allows you to change the
parameters of the inside as you please. Let’s say you want to use a specific cleaning method.

First, let’s look at the documentation for “ecg_clean()" <https://neurokit2.readthedocs.io/en/latest/functions.html#
neurokit2.ecg_clean>"__, you can see that they are several different methods for cleaning which can be specified.
The default is the Neurokit method, however depending on the quality of your signal (and several other factors), other
methods may be more appropriate. It is up to you to make this decision.

You can now change the methods as you please for each function in your custom processing function that you have
written above:

[24]: # Define a new function

Do processing

Prepare output

(continues on next page)

48 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_clean
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_clean

[25]7:

[26] :

[27]:

NeuroKit2, Release 0.0.39

(continued from previous page)

Similarly, you can select a different method for the peak detection.

5.9.4 Customize even more!

It is possible that none of these methods suit your needs, or that you want to test a new method. Rejoice yourself, as
NeuroKit allows you to do that by providing what can be referred to as “low-level” functions.

For instance, you can rewrite the cleaning procedure by using the signal processsing tools offered by NeuroKit:

You can use this function inside your custom processing written above:

Define a new function

Do processing

Prepare output

Congrats, you have created your own processing pipeline! Let’s see how it performs:

5.9. Customize your Processing Pipeline 49

https://neurokit2.readthedocs.io/en/latest/functions.html#general-signal-processing

NeuroKit2, Release 0.0.39

Electrocardiogram (ECG)

Raw and Cleaned Signal

125
Quality
100 Raw

—— Cleaned

0.75 7 R-peaks

0.50 4
0.25
0.00
—0.25 A |
—=0.50 1

-0.75

Samples '

Heart Rate

az 4 — Rate
Mean

B1 A

Beats per minute (bpm)

T T T T T T T
o 2000 4000 B000 8000 10000 12000 14000
Samples

This doesn’t look bad :) Can you do better?

5.10 Event-related Analysis

This example shows how to use Neurokit to extract epochs from data based on events localisation and its corresponding
physiological signals. That way, you can compare experimental conditions with one another.

Load NeuroKit and other useful packages
import

import

import

import

import

% inline

5 # Bigger images
14

50 Chapter 5. Examples

NeuroKit2, Release 0.0.39

5.10.1 The Dataset

Use the nk .data () function to load the dataset located on Neurokit data folder.
It contains 2.5 minutes of biosignals recorded at a frequency of 100Hz (2.5 x 60 x 100 = 15000 data points).
Biosignals : ECG, RSP, EDA + Photosensor (event signal)

: # Get data

This is the data from 1 participant to whom was presented 4 images (emotional stimuli, [APS-like emotional faces),
which we will refer to as events.

Importantly, the images were marked by a small black rectangle on the screen, which led to the photosensor signal to
go down (and then up again after the image). This is what will allow us to retrieve the location of these events.

They were 2 types (the condition) of images that were shown to the participant: “Negative” vs. “Neutral” in terms
of emotion. Each picture was presented for 3 seconds. The following list is the condition order.

5.10.2 Find Events

These events can be localized and extracted using events_find().

Note that you should also specify whether to select events that are higher or below the threshold using the "“thresh-
old_keep™" argument.

: # Find events

: {'onset': array ([1024, 4957, 9224, 129841]),

'duration': array([300, 300, 300, 3001]),
'label': array(['1l', '2', '3', '4'], dtype='<Ull"),
'condition': ['Negative', 'Neutral', 'Neutral', 'Negative']}

As we can see, events_find () returns a dict containing onsets and durations for each corresponding event, based
on the label for event identifiers and each event condition. Each event here lasts for 300 data points (equivalent to 3
seconds sampled at 100Hz).

: # Plot the location of event with the signals

5.10. Event-related Analysis 51

https://en.wikipedia.org/wiki/International_Affective_Picture_System
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.events_find

NeuroKit2, Release 0.0.39

17.5 1 i : i i
! A M H . H) .
15.0 1 T NV ANVANG - | S | AT AN [\
L — — e - ~L/ —)
2s{ : o :
i ! ECG
1 1
10.0 1 i i EDA
! ! - Photosensor
7.5 4 H i — RSP
1 1
| : 0
5.0 --—- 1 7
2.51 JAUAJNJ\pMﬁUf—HX_»_Ht4n_nJuﬁnmA_
N
{L}l{:ﬁ{l\rf TLLLLLLLLALLEL ALLALLRRLLELL Lt kL AL R L L LR L R LA L LR LLLLLL
0.0 ldddddddddd ddd FEFFrrrrrreerT Ll d i ddd ddddddd ddd frrrrrr’rrFfrrrrrrfl’l’rll’rrI'frr!rr?'rrfl’lflrfrf'fl’frr
1 1 1 1

0 2000 4000 6000 8000 10000 12000 14000

The output of events_plot() shows the corresponding events in the signal, with the blue dashed line representing a
Negative event and red dashed line representing a Neutral event.

5.10.3 Process the Signals

Now that we have the events location, we can go ahead and process the data.

Biosignals processing can be done quite easily using NeuroKit with the bio_process() function. Simply provide the
appropriate biosignal channels and additional channels that you want to keep (for example, the photosensor), and
bio_process () will take care of the rest. It will return a dataframe containing processed signals and a dictionary
containing useful information.

Process the signal

Visualize

theres is a ton of features now, but,
—not in epochs

: <matplotlib.axes._subplots.AxesSubplot at 0x1c6b9b8c898>

52 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.events_plot
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.bio_process

NeuroKit2, Release 0.0.39

80 —— ECG_Raw
70 ECG_Clean
—— ECG_Rate
60 —— ECG_Quality
50 ECG_R_Peaks
40 —— ECG_P_Peaks
ECG_Q Peaks
30 ECG_S Peaks
20 ECG_T_Peaks
— A — ECG_P_Onsets -
10 —— ECG_T_Offsets
0 L y S ECG_Phase_Atrial o

— ECG_Phase_Completion_Atrial B

—— ECG_Phase_Ventricular
ECG_Phase_Completion_Ventricular

—— RSP_Raw
RSP_Clean
RSP_aAmplitude
RSP_Rate
RSP_Phase

—— RSP_Phase_Completion
RSP_Peaks

—— RSP_Troughs

—— EDA_Raw
EDA_Clean

—— EDA_Tonic
EDA_Phasic
SCR_Onsets
SCR_Peaks
SCR_Height

—— SCR_Amplitude
SCR_RiseTime

—— SCR_Recovery

—— SCR_RecoveryTime
RSA P2T

0 2000 4000 6000 8000

5.10.4 Create Epochs

We now have to transform this dataframe into epochs, i.e. segments (chunks) of data around the events using
epochs_create().

1. We want it to start 1 second before the event onset

end > seconds~* afterwards

These are passed into the epochs_start and epochs_end arguments, respectively.

Our epochs will then cover the region from -1 s to +6 s (i.e., 700 data points since the signal is sampled at 100Hz).

[8]: # Build and plot epochs

Let’s plot some of the signals of the first epoch (and transform them to the same scale for visualization purposes).

5.10. Event-related Analysis 53

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.epochs_create

NeuroKit2, Release 0.0.39

in
= # iterate epochs",
Select relevant columns
‘_)",
= # get title from condition 1list",
= # Plot scaled signals"
Negative
—— ECG_Clean
41 —— ECG_Rate
—— RSP_Rate
—— RSP_Phase
21 —— EDA_Phasic
—— EDA Tonic T~ —
S| Hﬂ : 7\ Y
7 7 — 4
T 1
7 /=
-2 1
-1 0 1 3 4 5 6
Neutral
5
ECG_Clean
4 ECG_Rate
3 RSP_Rate
RSP_Phase
2 EDA_Phasic |
11 EDA_Tonic
01) —J\J /"ﬁ
l i; ——l
v V V1 V
-2 T
3
-1 0 1 3 a 5 6
54 Chapter 5. Examples

NeuroKit2, Release 0.0.39

Neutral
—— ECG_Clean
ECG_Rate
—— RSP _Rate
—— RSP_Phase
- —— EDA_Phasic
| A —— EDA _Tonic -
?f_ N
Y|
V V '
3
4 5 i ; 3 i 5 :
Negative
5_
—— ECG_Clean
4 ECG_Rate
3] —— RSP_Rate
I —— RSP _Phase
21 —— EDA_Phasic
1] = 1] —— EDA_Tonic
U'J\J f/-ju —bs h _
1] v lU i I V T i
2 T
_3-
-1 0 1 2 3 a 5 6

5.10.5 Extract Event Related Features
With these segments, we are able to compare how the physiological signals vary across the different events. We do
this by: 1. Iterating through our object epochs
2. Storing the mean value of :math:"X" feature of each condition in a new dictionary
3. Saving the results in a readable format
We can call them epochs-dictionary, the mean-dictionary and our results-dataframe.

[10]: = # Initialize an empty dict,

in
= # then Initialize an empty dict inside of it with the_
—iterative

Save a temp var with dictionary called <epoch_index> in epochs-dictionary

We want its features:

Feature 1 ECG
(continues on next page)

5.10. Event-related Analysis 55

NeuroKit2, Release 0.0.39

(continued from previous page)
= . -100 0 . # Baseline
= . 0 400 . # Mean heart rate in the 0-4,,
—seconds

Store ECG in df
= - # Correct for baseline

Feature 2 EDA - SCR
= 0 600 . # Maximum SCR peak
If no SCR, consider the magnitude, i.e. that the value is 0

=0
Store SCR in df

Feature 3 RSP
= . -100 0 . # Baseline
= . 0 600
Store RSP in df
= = # Correct for baseline

= . . = # Convert to a dataframe
= # Add the conditions
Print DataFrame

[107: ECG_Rate SCR_Magnitude RSP_Rate Condition
1 -4.286137 3.114808 2.729480 Negative
2 -5.387987 0.000000 2.094437 Neutral
3 -1.400696 0.000000 -0.062720 Neutral
4 -3.804883 1.675922 -1.674218 Negative

5.10.6 Plot Event Related Features

You can now plot and compare how these features differ according to the event of interest.

[117]: . = = _
[11]: <matplotlib.axes._subplots.AxesSubplot at 0xlc6bd25e828>

—1.5 1

—-2.01

]
Uio| e —

Negzlative Neutral
Condition

56 Chapter 5. Examples

NeuroKit2, Release 0.0.39

[12]: . = = =
[12]: <matplotlib.axes._subplots.AxesSubplot at 0xlc6bd673c50>

RSP_Rate

Negétive Neutral
Condition

[13]: o = = =

[13]: <matplotlib.axes._subplots.AxesSubplot at 0xlc6a62lal60>

3.0 4

g
n

g
o

gnitude

SCR_Ma
e
(=] w

=
[

=
o

Negative Neutral
Condition

Then interpret : As we can see, there seems to be a difference between the negative and the neutral pictures. Neg-
ative stimuli, as compared to neutral stimuli, were related to a stronger cardiac deceleration (i.e., higher heart rate
variability), an accelerated breathing rate, and higher SCR magnitude.

5.10.7 Important remarks:

You can’t break anything if you’re on Binder, so have fun. Keep in mind that this is for illustration purposes only.

Data size limits on Github force us to downsample and have only one participant (sample rate would have to be >250
Hz, and you can’t do stats with 4 observations in 1 subjects).

We invite you to read on reporting guidelines for biosignal measures. For ECG-PPG/HRYV : Quintana, Alvarez &
Heathers, 2016 - GRAPH

5.10. Event-related Analysis 57

https://www.ncbi.nlm.nih.gov/pubmed/27163204
https://www.ncbi.nlm.nih.gov/pubmed/27163204

[4]:

NeuroKit2, Release 0.0.39

5.11 Interval-related Analysis

This example shows how to use Neurokit to analyze longer periods of data (i.e., greater than 10 seconds) such as
resting state data. If you are looking to perform event-related analysis on epochs, you can refer to this Neurokit
example here.

: # Load NeuroKit and other useful packages

import
import
import
% inline

= # Bigger images

5.11.1 The Dataset

First, download the dataset located on the GitHub repository.
It contains 5 minutes of physiological signals recorded at a frequency of 100Hz (5 x 60 x 100 = 30000 data points).
It contains the following signals : ECG, PPG, RSP

: # Get data

This is the resting state data from 1 participant who was asked to close his/her eyes for 8 minutes, trying not to think
of anything as well as not to fall asleep.

5.11.2 Process the Signals

In this analysis here, we will focus on extracting ECG and RSP features. To process the respective physiological
signals, you can use ecg_process() and rsp_process(). You can then then visualize these signals using ecg_plot() and
rsp_plot(). For the purposes of these example, we will select just 3000 datapoints (or 30s) to visualize.

Note: Do remember to specify the correct sampling_rate (in this case, to 100Hz) in which the signals were
generated, in all the relevant functions.

Process ecg

58 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/examples/eventrelated.html
https://neurokit2.readthedocs.io/en/latest/examples/eventrelated.html
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_process
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.rsp_process
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_plot
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.rsp_plot

[5]:

NeuroKit2, Release 0.0.39

Electrocardiogram (ECG)

Raw and Cleaned Signal

Individual Heart Beats

0.151 Quality
0.10 Rav
) —— Cleaned
0.05 1 R-peaks [0.10 -
0.00
—0.05 -
—0.10 0.05
4] 5 10 15 20 25 30
Time (seconds)
Heart Rate
105 0.00
— Rate
"E‘ 100 | Mean
o
=
a 957
2
g
s 907 +0.05 1
7]
o 851
i
T 80
o
?5 L T T T T T T T -0'10 1 T T T T
4] 5 10 15 20 25 30 —0.2 0.0 02 0.4
Time (seconds) Time (seconds)
Process rsp
_ . =100
= . 3000 =100

5.11. Interval-related Analysis

59

NeuroKit2, Release 0.0.39

Respiration (RSP)

Raw and Cleaned Signal

1.0 e
Cleaned
0.5 ® Inhalation Peaks
l\ Exhalation Troughs
| exhalation
0.0 . /\/\/\/\/\/\ inhalation
a—— ~——t
Breathing Rate
20

T~ Rate
19 \ Mean
18 - f!_,-f"'___ I
17 o
16 . ___,/‘

Breathing Amplitude

0.65 —— Amplitude
-==- Mean
0.60 \
0.55
0.50
[IJ é 1IO 1|5 2|0 2l5 3|0

Time (seconds)

5.11.3 Exiract Features

Now that we have the processed signals, we can now perform the analysis using ecg_intervalrelated() and
rsp_intervalrelated(). Simply provide the processed dataframe and these functions will return a dataframe of the
features pertaining to the specific signal.

These features will be quite different from event-related features (See Event-related analysis example) as these signals
were generated over a longer period of time. Hence, apart from the mean signal rate, variability metrices pertaining to
heart rate variability (HRV) and respiratory rate variability (RRV) are also extracted here.

ECG_Rate_Mean HRV_RMSSD HRV_MeanNN HRV_SDNN HRV_SDSD HRV_CVNN \

0 86.394304 3.883777 69.475638 4.903604 3.888256 0.07058
HRV_CVSD HRV_MedianNN HRV_MadNN HRV_MCVNN ... HRV_LFn HRV_HFn \
0 0.055901 69.0 4.4478 0.064461 ... NaN 0.885628

HRV_LnHF HRV_SD1 HRV_SD2 HRV_SD2SDl1 HRV_CSI HRV_CVI \
0 1.137604 2.749412 4.762122 1.732051 1.732051 2.32116

HRV_CSI_Modified HRV_SampEn
0 32.992946 1.978637

[1 rows x 30 columns]

60 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_intervalrelated
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.rsp_intervalrelated
https://neurokit2.readthedocs.io/en/latest/examples/eventrelated.html

NeuroKit2, Release 0.0.39

RSP_Rate_Mean RSP_Amplitude_Mean RRV_SDRBB RRV_RMSSD RRV_SDSD \
0 15.744233 0.397941 100.662988 119.691326 120.504248

RRV_VLF RRV_LF RRV_HF RRV_LFHF RRV_LFn RRV_HFn RRV_SD1 \
0 NaN NaN 793512.619536 NaN NaN NaN 85.209371

RRV_SD2 RRV_SD2SD1 RRV_ApEn RRV_SampEn RRV_DFA_2
0 114.041384 1.338367 0.717675 1.504077 0.618535

5.11.4 Optional: Segmenting the Data

If you want to segment your data for analysis, such as analyzing two separate portions of your resting state data, you
can simply do so by splitting the ecg_signals dataframe into epochs using epochs_create(). Using this example
dataset, let’s say you want to analyze the first half and the second half of the ECG data. This means that each halved
data would last for 60 x 2.5s = 150s.

In this function, we would also specify the onset of events to be at the Oth (for the first half of the data) and the 15000th
datapoint (for the second half of the data), since there are 30000 data points in total.

Half the data

< = =

This returns a dictionary of 2 processed ECG dataframes, which you can then enter into
ecg_intervalrelated().

Analyze

ECG_Rate_Mean HRV_RMSSD HRV_MeanNN HRV_SDNN HRV_SDSD HRV_CVNN \

1 86.377089 3.638450 69.497674 5.167181 3.645389 0.074350

2 86.411519 4.032578 69.460465 4.648090 4.042033 0.066917
HRV_CVSD HRV_MedianNN HRV_MadNN HRV_MCVNN ... HRV_LFn HRV_HFn \

1 0.052354 69.0 4.4478 0.064461 ... NaN NaN

2 0.058056 69.0 4.4478 0.0644061 ... NaN NaN

HRV_LnHF HRV_SD1 HRV_SD2 HRV_SD2SD1 HRV_CST HRV_CVI \
1 NaN 2.577680 4.464672 1.732051 1.732051 2.265138
2 NaN 2.858149 4.950459 1.732051 1.732051 2.354850

HRV_CSI_Modified HRV_SampEn
1 30.932155 1.252763
2 34.297785 1.881786

[2 rows x 30 columns]

This then returns a dataframe of the analyzed features, with the rows representing the respective segmented signals.
Try doing this with your own signals!

5.11. Interval-related Analysis 61

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.epochs_create

[10]:

[12]:

NeuroKit2, Release 0.0.39

5.12 Analyze Electrodermal Activity (EDA)

This example shows how to use NeuroKit2 to extract the features from Electrodermal Activity (EDA) .

: # Load the NeuroKit package and other useful packages

import
import

[}

% inline

= # Bigger images

5.12.1 Extract the cleaned EDA signal

In this example, we will use a simulated EDA signal. However, you can use any signal you have generated (for
instance, extracted from the dataframe using read_acgknowledge().

: # Simulate 10 seconds of EDA Signal (recorded at 250 samples / second)

Once you have a raw EDA signal in the shape of a vector (i.e., a one-dimensional array), or a list, you can use
eda_process() to process it.

Process the raw EDA signal

Note: It is critical that you specify the correct sampling rate of your signal throughout many processing functions, as
this allows NeuroKit to have a time reference.

This function outputs two elements, a dataframe containing the different signals (e.g., the raw signal, clean signal,
SCR samples marking the different features etc.), and a dictionary containing information about the Skin Conductance
Response (SCR) peaks (e.g., onsets, peak amplitude etc.).

5.12.2 Locate Skin Conductance Response (SCR) features

The processing function does two important things for our purpose: Firstly, it cleans the signal. Secondly, it detects
the location of 1) peak onsets, 2) peak amplitude, and 3) half-recovery time. Let’s extract these from the output.

: # Extract clean EDA and SCR features

We can now visualize the location of the peak onsets, the peak amplitude, as well as the half-recovery time points in
the cleaned EDA signal, respectively marked by the red dashed line, blue dashed line, and orange dashed line.

Visualize SCR features in cleaned EDA signal

62 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.read_acqknowledge
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.eda_process

[13]:

[14]:

[14]:

NeuroKit2, Release 0.0.39

— Signal
-== 0
=—=1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
T

0

0 500 1000 1500 2000

5.12.3 Decompose EDA into Phasic and Tonic components

We can also decompose the EDA signal into its phasic and tonic components, or more specifically, the Phasic Skin
Conductance Response (SCR) and the Tonic Skin Conductance Level (SCL) respectively. The SCR represents
the stimulus-dependent fast changing signal whereas the SCL is slow-changing and continuous. Separating these two
signals helps to provide a more accurate estimation of the true SCR amplitude.

Filter phasic and tonic components

Note: here westandardizedthe raw EDA signal before the decomposition, which can be useful in the presence of high
inter-individual variations.

We can now add the raw signal to the dataframe containing the two signals, and plot them!

= # Add raw signal

<matplotlib.axes._subplots.AxesSubplot at 0x29adaa05358>

304 —— EDA_Tonic
I\ M\ [EDA_Phasic

25| | A [\ —— EDA_Raw
20 1 I
15 ;
10

0.5

500 1000 1500 2000

5.12. Analyze Electrodermal Activity (EDA) 63

NeuroKit2, Release 0.0.39

5.12.4 Quick Plot

You can obtain all of these features by using the eda_plot() function on the dataframe of processed EDA.

[15]: # Plot EDA signal

Electrodermal Activity (EDA)
Raw and Cleaned Signal

20 Raw
= Cleaned
15 A

10 4

T Skin'Conductance Response [SCRT

—— Phasic Component
031 SCR - Onsets

~ ® S5CR-Peaks
0.0 4 x x_‘ SCR. - Half recovery
~

Sk‘ln Conductance Level (SCL)) '

—— Tonic Component
13 4

12 4

T T T T
o 500 1000 1500 2000 2500
Samples

5.13 Analyze Respiratory Rate Variability (RRV)

Respiratory Rate Variability (RRV), or variations in respiratory rhythm, are crucial indices of general health and
respiratory complications. This example shows how to use NeuroKit to perform RRV analysis.

5.13.1 Download Data and Extract Relevant Signals

[1]: # Load NeuroKit and other useful packages
import
import
import
import

[}

% inline
[2]: . = # Bigger images

In this example, we will download a dataset that contains electrocardiogram, respiratory, and electrodermal activity
signals, and extract only the respiratory (RSP) signal.

[3]: # Get data

= # Visualize

64 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.eda_plot

NeuroKit2, Release 0.0.39

—— Signal
18 A

16 1

14 -

12

10 1

0.8 q

0.6 4

20 40 &0 80 140
Time {s)

You now have the raw RSP signal in the shape of a vector (i.e., a one-dimensional array). You can then clean it
using rsp_clean () and extract the inhalation peaks of the signal using rsp_peaks (). This will output 1) a
dataframe indicating the occurrences of inhalation peaks and exhalation troughs (“1” marked in a list of zeros), and 2)
a dictionary showing the samples of peaks and troughs.

Note: As the dataset has a frequency of 100Hz, make sure the *“sampling_rate"" is also set to 100Hz. It is critical that
you specify the correct sampling rate of your signal throughout all the processing functions.

: # Clean signal

= 5 =100

Extract peaks

— =100 =

— RSP_Raw

¥ W

10 A

05 1

05 1 | |'|

00 A || |I||

Fl || Iﬂl ||!I || |I

II|||'I||I'|I|I I'\J

0 |
L | |I I| II | [

U'll

A
| | ||l| ﬂl

N' W
I|||
v

h
|II II

"K-"'

RSP_Clean
I\
\/
i
.". ||n| Iﬁl Inl .ﬂll I||I ||I || 'l IIII', I|'|I ||‘| | L.l ". | |'II |L_.ll
\ /
~.-| I'UIIIIIAJIIK‘I'I'II'\‘I II| |_UII\‘I

\
Y

0 » o

&

P

Time (51

e S A0

5.13. Analyze Respiratory Rate Variability (RRV)

65

NeuroKit2, Release 0.0.39

Signal

08
06
04
02 1
0.0

-02

-04

14000

Signal

08
06
04
02 4
00

-02

0.4

Extract rate

[8]:

Note: You,,

100

—can also replace info with peaks dictionary

Visualize

100

"BPM"')

.5,

0

Text (0,

[8]:

Signal

140

25.0 4

2.5 1

Time {s)

Chapter 5. Examples

66

NeuroKit2, Release 0.0.39

5.13.2 Analyse RRV

Now that we have extracted the respiratory rate signal and the peaks dictionary, you can then input these into
rsp_rrv (). This outputs a variety of RRV indices including time domain, frequency domain, and nonlinear fea-
tures. Examples of time domain features include RMSSD (root-mean-squared standard deviation) or SDBB (standard
deviation of the breath-to-breath intervals). Power spectral analyses (e.g., LF, HF, LFHF) and entropy measures (e.g.,
sample entropy, SampEn where smaller values indicate that respiratory rate is regular and predictable) are also exam-
ples of frequency domain and nonlinear features respectively.

A Poincaré plot is also shown when setting show=True, plotting each breath-to-breath interval against the next
successive one. It shows the distribution of successive respiratory rates.

= . =100 =
Neurokit warning: signal_psd(): The duration of recording is too short to support a,

—sufficiently long window for high frequency resolution. Consider using a longer,,
—recording or increasing the "min_frequency’

RRV_SDBB RRV_RMSSD RRV_SDSD RRV_VLF RRV_LF RRV_HF \

0 1030.411296 1269.625397 1286.590811 0.0 203.846501 2000.465169
RRV_LFHF RRV_LFn RRV_HFn RRV_SD1 RRV_SD2 RRV_SD2SD1 RRV_ApEn \

0 0.1019 0.092476 0.907524 909.757087 1138.34833 1.251266 0.496939

RRV_SampEn RRV_DFA

0 0.693147 0.755783
Power Spectral Density (PSD)
Power
Signal
25000 1 = 0.00.0.04Hz
. 0.04-0.15Hz
. 0.15-0.40Hz
20000
o
= =
1
W
E 15000 1
E
=
@ 10000 -
uw
5000 -
0

0.1 02 03 04 05
Frequency (Hz)

5.13. Analyze Respiratory Rate Variability (RRV) 67

NeuroKit2, Release 0.0.39

Poincaré Plot

B D1
5Dz

BOOO

7000

=]
[=]
(=]

BB n+1 (s)

b=
[=]
(=]

3000

3000 4000 5000 BOO0D 7000 8000
BB n (s)

This is a simple visualization tool for short-term (SD1) and long-term variability (SD2) in respiratory rhythm.

68 Chapter 5. Examples

NeuroKit2, Release 0.0.39

See documentation for full reference

RRV method taken from : Soni et al. 2019

5.14 ECG-Derived Respiration (EDR) Analysis

ECG-derived respiration (EDR) is the extraction of respiratory information from ECG and is a noninvasive method to
monitor respiration activity under instances when respiratory signals are not recorded. In clinical settings, this presents
convenience as it allows the monitoring of cardiac and respiratory signals simultaneously from a recorded ECG signal.
This example shows how to use Neurokit to perform EDR analysis.

: # Load NeuroKit and other useful packages

import
import
import
import

)

% inline

= 15 5 # Bigger images

5.14.1 Download ECG Data

In this example, we will download a dataset containing an ECG signal sampled at 1000 Hz.

: # Get data

. 1

Visualize signal

10 —— Signal
08
06

04 4

02 4

0 10000 20000 30000 10000 50000
Samples

5.14. ECG-Derived Respiration (EDR) Analysis 69

[17]:

NeuroKit2, Release 0.0.39

5.14.2 Extraction of ECG Features

Now you can extract the R peaks of the signal using ecg_peaks () and compute the heart period using
ecg_rate ().

Note: As the dataset has a frequency of 1000Hz, make sure the ““sampling_rate™" is also set to 1000Hz. It is critical
that you specify the correct sampling rate of your signal throughout all the processing functions.

: # Extract peaks

Compute rate

5.14.3 Analyse EDR

Now that we have an array of the heart period, we can then input this into ecg_rsp () to extract the EDR.

Default method is by Van Gent et al. 2019 ; see the full reference in documentation (run : nk.ecg_rsp?)

Visual comparison

— Signal

-4

D 10000 20000 30000 40000 50000
Samples

The function ecg_rsp () incorporates different methods to compute EDR. For a visual comparison of the different
methods, we can create a dataframe of EDR columns each of which are produced by different methods, and then plot
it, like so:

70 Chapter 5. Examples

[17]:

: # Automatically process the

NeuroKit2, Release 0.0.39

57 —— \an Gent et al.
04 \/‘
_5 4

T T T T T T
10

Chariton et al.

—— Soni et al.
N

5 —— Sarkar et al.
] —
_5 4

X“DDQ 1“&(:0 _I‘PQ()Q mﬁ@ ‘PQ()Q

=1

5.15 Extract and Visualize Individual Heartbeats

This example shows how to use NeuroKit to extract and visualize the QRS complexes (individual heartbeats) from an
electrocardiogram (ECG).

Load NeuroKit and other useful packages
import
import
import

[}

% inline

= # Bigger images

5.15.1 Extract the cleaned ECG signal

In this example, we will use a simulated ECG signal. However, you can use any of your signal (for instance, extracted
from the dataframe using the read_acqknowledge().

: # Simulate 30 seconds of ECG Signal (recorded at 250 samples / second)

Once you have a raw ECG signal in the shape of a vector (i.e., a one-dimensional array), or a list, you can use
ecg_process() to process it.

Note: It is critical that you specify the correct sampling rate of your signal throughout many processing functions, as
this allows NeuroKit to have a time reference.

(raw) ECG signal

This function outputs two elements, a dataframe containing the different signals (raw, cleaned, etc.) and a dictionary
containing various additional information (peaks location, ...).

5.15. Extract and Visualize Individual Heartbeats 71

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.read_acqknowledge%3E
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_process%3E

[21]:

[22]:

[29]:

NeuroKit2, Release 0.0.39

5.15.2 Extract R-peaks location

The processing function does two important things for our purpose: 1) it cleans the signal and 2) it detects the location
of the R-peaks. Let’s extract these from the output.

Extract clean ECG and R-peaks location

Great. We can visualize the R-peaks location in the signal to make sure it got detected correctly by marking their
location in the signal.

Visualize R-peaks in ECG signal

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Once that we know where the R-peaks are located, we can create windows of signal around them (of a length of for
instance 1 second, ranging from 400 ms before the R-peak), which we can refer to as epochs.

5.15.3 Segment the signal around the heart beats

You can now epoch all these individual heart beats, synchronized by their R peaks with the ecg_segment() function.

: # Plotting all the heart beats

This create a dictionary of dataframes for each ‘epoch’ (in this case, each heart beat).

5.15.4 Advanced Plotting

This section is written for a more advanced purpose of plotting and visualizing all the heartbeats segments. The
code below uses packages other than NeuroKit2 to manually set the colour gradient of the signals and to create a more
interactive experience for the user - by hovering your cursor over each signal, an annotation of the signal corresponding
to the heart beat index is shown.

Custom colors and legend

Here, we define a function to create the epochs. It takes in cleaned as the cleaned signal dataframe, and peaks as
the array of R-peaks locations.

notebook

o

= # resize

Define a function to create epochs

72 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_segment

NeuroKit2, Release 0.0.39

S w N RO

We then pivot the dataframe so that each column corresponds to the signal values of one channel, or Label.

Signal
-0.188295
-0.182860
-0.177281
-0.171530
-0.165576

: Label
Time
-0.300000 -0.
-0.295977 -0.
-0.291954 -0.
-0.287931 -0.
-0.283908 -0.
Label
Time
-0.300000 -0.
-0.295977 -0.
-0.291954 -0.
-0.287931 -0.
-0.283908 -0.
Label
Time
-0.300000 -0.
-0.295977 -0.
-0.291954 -0.
-0.287931 -0.
-0.283908 -0.
Label
Time
-0.300000 -0.
-0.295977 -0.
-0.291954 -0.
-0.287931 -0.
-0.283908 -0.
[5 rows x 35

Index Label

141
142
143
144
145

1
188295 -0.
182860 -0
177281 -0.
171530 -0.
165576 -0.

15
134212 -0.
132954 -0.
131499 -0.
129797 -0.
127774 -0.

34
097891 -0.
096876 -0.
095801 -0.
094629 -0.
093312 -0.

8
137964 -0.
137485 -0.
136902 -0.
136184 -0.
135299 -0.
columns]

Import dependencies
import

Prepare figure

Aesthetics

e e e

10

130393

.129565

128556
127327
125839

16

126986
125978
124859
123588
122108

35

186199
190515
194216
197353
199973

129776
128841
127814
126646
125278

Time
1 -0.300000

-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.
-0.

in

-0.295977
-0.291954
-0.287931
-0.283908

11

133485
132160
130639
128864
126767

17

128488
127522
126416
125143
123664

115438
114778
113998
113073
111967

-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.
-0.

12

142082
141467
140687
139683
138381

18

122148
121446
120663
119759
118693

.133537
.132642
.131618
.130441
.129071

-0.
.128912
-0.
-0.
-0.

-0

13

129604

128097

127114
125906

14 A\

.128826
.128071
.127219
.126234
.125059

32 33

-0.129433 -0.155517
-0.128514 -0.154457
-0.127415 -0.153226
-0.126073 -0.151793
-0.124416 -0.150128

.136313
.134961
.133385
.131522
.129285

.137583
.136883
.136045
.135024
.133753

Set labels for each signal

(continues on next page)

5.15.

Extract and Visualize Individual Heartbeats

73

NeuroKit2, Release 0.0.39

(continued from previous page)
= #
—Get color map
= # Create empty list to contain the plot of each signal

[

in

o°
|

Show figure

<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Interactivity

This section of the code incorporates the aesthetics and interactivity of the plot produced. Unfortunately, the inter-
activity is not active in this example but it should work in your console! As you hover your cursor over each signal,
annotation of the channel that produced it is shown. The below figure that you see is a standstill image.

Note: you need to install the ““mplcursors™" package for the interactive part (" pip install mplcursors”")

[32]: # Import packages

import
from import
import

[33]: # Obtain hover cursor

—

Return figure

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

“cells”: [

9%, <« 9%

{ “cell_type”: “markdown”, “metadata”: {}, “source”: [

“# Locate P, Q, S and T waves in ECG”

I

9, <

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“This example shows how to use Neurokit to delineate the ECG peaks in Python us-
ing NeuroKit. This means detecting and locating all components of the QRS complex,
including P-peaks and T-peaks, as well their onsets and offsets from an ECG signal.”

74 Chapter 5. Examples

NeuroKit2, Release 0.0.39

3o
9, < CLIN?3

“cell_type”: “code”, “execution_count”: 4, “metadata”: {}, “outputs”: [], “source”: [

EEINT3 EEENT3d

“# Load NeuroKit and other useful packagesn”, “import neurokit2 as nkn”, “import

LEEN T3 LEINT3 ELINT3

numpy as npn”, “import pandas as pdn”, “import matplotlib.pyplot as pltn”, “import

LEINY3

seaborn as snsn”, “%matplotlib inlinen”,, “plt.rcParams[‘figure.figsize’] = [8, 5] # Bigger
images”

}’ {
“cell_type”: “markdown”, “metadata”: {}, “source”: [

“In this example, we will use a short segment of ECG signal with sampling rate of 3000

Hz. “
]
3 A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“## Find the R peaks”
]
3 A

99, < CLINT3

“cell_type”: “code”, “execution_count”: 5, “metadata”: {}, “outputs”: [], “source”: [

“# Retrieve ECG data from data folder (sampling rate= 1000 Hz)n”, “ecg_signal =
nk.data(dataset="ecg_3000hz")[‘ECG’]n”, “# Extract R-peaks locationsn”, “_, rpeaks
= nk.ecg_peaks(ecg_signal, sampling_rate=3000)"

1A
“cell_type”: “markdown”, “metadata”: {}, “source”: [

“The [ecg_peaks()](https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.
ecg_peaks>) function will return a dictionary contains the samples at which R-peaks are
located. “

b

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Let’s visualize the R-peaks location in the signal to make sure it got detected correctly.”

1 {
“cell_type”: “code”, “execution_count”: 6, “metadata”: {}, “outputs”: [
{

“data”: { “image/png”: “iIVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHNCS!
“text/plain”: [

“<Figure size 576x360 with 1 Axes>"

. Extract and Visualize Individual Heartbeats 75

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_peaks
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_peaks

NeuroKit2, Release 0.0.39

}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
3 A
“data”: { “image/png”: “iVBORwWOKGgoAAAANSUhEUgAAAewAAAEVCAYAAACHVVI6AAAABHNC
“<Figure size 576x360 with 1 Axes>"
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}
1, “source”: [

“# Visualize R-peaks in ECG signaln”, “plot = nk.events_plot(rpeaks[‘ECG_R_Peaks’],

ecg_signal)n”, “n”, “# Zooming into the first 5 R-peaksn”, “plot =
nk.events_plot(rpeaks[‘ECG_R_Peaks’][:5], ecg_signal[:20000])”

]
3o
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“Visually, the R-peaks seem to have been correctly identified. You can also
explore searching for R-peaks using different methods provided by Neurokit
[ecg_peaks()](https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.
ecg_peaks>).”
]
I
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“## Locate other waves (P, Q, S, T) and their onset and offset”
]
3 A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“In [ecg_delineate()](https://neurokit2.readthedocs.io/en/latest/functions.html#
neurokit2.ecg_delineate>), Neurokit implements different methods to segment the
QRS complexes. There are the derivative method and the other methods that make
use of Wavelet to delineate the complexes. “
1
3o A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“### Peak method”
]
3o

76 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_peaks
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_peaks
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_delineate
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_delineate

NeuroKit2, Release 0.0.39

99, < LI

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“First, let’s take a look at the ‘peak’ method and its output.”

]
3 A
“cell_type”: “code”, “execution_count”: 7, “metadata”: {}, “outputs’: [], “source”: [
“# Delineate the ECG signaln”, “_, waves_peak = nk.ecg_delineate(ecg_signal,
rpeaks, sampling_rate=3000)”
1
3 A

29, <« 9%

“cell_type”: “code”, “execution_count”: 8, “metadata”: {}, “outputs™: [
{
“data”: { “image/png”: “iIVBORwWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“<Figure size 576x360 with 1 Axes>"
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
A

“data”: { “image/png”: “iIVBORWOKGgoAAAANSUhEUgAAAewAAAEVCAYAAACHVVI6AAAABHN
“text/plain”: [

“<Figure size 576x360 with 1 Axes>"
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}
], “source”: [

“# Visualize the T-peaks, P-peaks, Q-peaks and S-peaksn”,

“plot = nk.events_plot([waves_peak[‘ECG_T_Peaks’], n”, ”
waves_peak[‘ECG_P_Peaks’],n”, ” waves_peak[‘ECG_Q_Peaks’],n”, ”
waves_peak[‘ECG_S_Peaks’]], ecg_signal)n”, “n”, “# Zooming into
the first 3 R-peaks, with focus on T_peaks, P-peaks, Q-peaks and S-
peaksn”, “plot = nk.events_plot([waves_peak[‘ECG_T_Peaks’][:3], n”, ”
waves_peak[‘ECG_P_Peaks’][:3],n”, ” waves_peak[‘ECG_Q_Peaks’][:3],n”, ”
waves_peak[‘ECG_S_Peaks’][:3]], ecg_signal[:12500])n”

]

1 {
“cell_type”: “markdown”, “metadata”: {}, “source”: [
5.15. Extract and Visualize Individual Heartbeats 77

NeuroKit2, Release 0.0.39

“Visually, the ‘peak’ method seems to have correctly identified the P-peaks, Q-peaks,
S-peaks and T-peaks for this signal, at least, for the first few complexes. Well done,
peak'n”, “n”, “However, it can be quite tiring to be zooming in to each complex and
inspect them one by one. To have a better overview of all complexes at once, you can
make use of the show argument in [ecg_delineate()](https://neurokit2.readthedocs.io/
en/latest/functions.html#neurokit2.ecg_delineate>) as below.”

|
“cell_type”: “code”, “execution_count”: 9, “metadata”: {}, “outputs”: [

{
“data”: { “image/png”: “iVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(

“<Figure size 576x360 with 1 Axes>"
]

}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}

], “source”: [

EE RT3

“# Delineate the ECG signal and visualizing all peaks of ECG complexesn”, “_,
waves_peak = nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, show=True,
show_type="peaks’)”

I
99, 9

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“The ‘peak’ method is doing a glamorous job with identifying all the ECG peaks for
this piece of ECG signal.n”, “n”, “On top of the above peaks, the peak method also
identify the wave boundaries, namely the onset of P-peaks and offset of T-peaks. You
can vary the argument show_type to specify the information you would like plot.n”,
“n”, “Let’s visualize them below:”

b

LLINT3

“cell_type”: “code”, “execution_count”: 10, “metadata”: {}, “outputs”: [

{

“data”: { “image/png”: “iVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [

“<Figure size 576x360 with 1 Axes>"
1
}, “metadata”: {

“needs_background”: “light”

78 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_delineate
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_delineate

NeuroKit2, Release 0.0.39

}, “output_type”: “display_data”
}

], “source”: [

ELINT3

“# Delineate the ECG signal and visualizing all P-peaks boundariesn”, “signal_peak,
waves_peak = nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, show=True,
show_type="bounds_P’)”

]
3o
“cell_type”: “code”, “execution_count”: 11, “metadata”: {}, “outputs”: [
{
“data”: { “image/png”: “iVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [
“<Figure size 576x360 with 1 Axes>”
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}

], “source”: [

ELINNT3

“# Delineate the ECG signal and visualizing all T-peaks boundariesn”, “signal_peaj,
waves_peak = nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, show=True,
show_type="bounds_T")”

b

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Both the onsets of P-peaks and the offsets of T-peaks appears to have been cor-
rectly identified here. This information will be used to delineate cardiac phases
in [ecg_phase()](https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.
ecg_phase>).n”, “n”, “Let’s next take a look at the continuous wavelet method.”

}’ {
“cell_type”: “markdown”, “metadata”: {}, “source”: [

“### Continuous Wavelet Method (CWT)”

3
“cell_type”: “code”, “execution_count”: 12, “metadata’: {}, “outputs”: [
{

“data”: { “image/png”: “iIVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [

. Extract and Visualize Individual Heartbeats 79

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_phase
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_phase

NeuroKit2, Release 0.0.39

i

“<Figure size 576x360 with 1 Axes>
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}
], “source”: [

“H# Delineate the ECG signaln”, “signal_cwt, waves_cwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="cwt",
show=True, show_type="all’)”

3o
9, < 9

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“By specifying ‘all’ in the show_type argument, you can plot all delineated informa-
tion output by the cwt method. However, it could be hard to evaluate the accuracy of
the delineated information with everyhing plotted together. Let’s tease them apart!”

3o

“cell_type”: “code”, “execution_count”: 13, “metadata”: {}, “outputs”: [

{

“data”: { “image/png”: “iVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [

“<Figure size 576x360 with 1 Axes>"
1
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}
], “source”: [

“# Visualize P-peaks and T-peaksn”, “signal_cwt, waves_cwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="cwt",
show=True, show_type="peaks’)”

3 A

“cell_type”: “code”, “execution_count”: 15, “metadata”: {}, “outputs”: [

{

“data”: { “image/png”: “iIVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [

“<Figure size 576x360 with 1 Axes>"

80 Chapter 5. Examples

NeuroKit2, Release 0.0.39

]

}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}
], “source”: [

“H# Visualize T-waves boundariesn”, “signal_cwt, waves_cwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="cwt",
show=True, show_type="bounds_T")”

]
A
“cell_type”: “code”, “execution_count”: 14, “metadata”: {}, “outputs”: [
{
“data”: { “image/png”: “iIVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [
“<Figure size 576x360 with 1 Axes>"
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}

], “source”: [

“H# Visualize P-waves boundariesn”, “signal_cwt, waves_cwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="cwt",
show=True, show_type="bounds_P’)”

]
3 A
“cell_type”: “code”, “execution_count”: 15, “metadata™: {}, “outputs”: [
{
“data”: { “image/png”: “iVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [
“<Figure size 576x360 with 1 Axes>"
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}

], “source”: [

. Extract and Visualize Individual Heartbeats 81

NeuroKit2, Release 0.0.39

“# Visualize R-waves boundariesn”, “signal_cwt, waves_cwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="cwt",
show=True, show_type="bounds_R’)”

]
|
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“Unlike the peak method, the continuous wavelet method does not idenfity the Q-
peaks and S-peaks. However, it provides more information regarding the bound-
aries of the wavesn”, ‘“n”, “Visually, except a few exception, CWT method is
doing a great job. However, the P-waves boundaries are not very clearly iden-
tified here.n”, “n”, “Last but not least, we will look at the third method in
Neurokit [ecg_delineate()](https://neurokit2.readthedocs.io/en/latest/functions.html#
neurokit2.ecg_delineate>) function: the discrete wavelet method. *
]
1 {
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“### Discrete Wavelet Method (DWT)”
]
|
“cell_type”: “code”, “execution_count”: 16, “metadata”: {}, “outputs™: [
{
“data”: { “image/png”: “iVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [
“<Figure size 576x360 with 1 Axes>"
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}

], “source”: [

“# Delineate the ECG signaln”, “signal_dwt, waves_dwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="dwt",
show=True, show_type="all’)”

1A
“cell_type”: “code”, “execution_count”: 17, “metadata”: {}, “outputs”: [

{

“data”: { “image/png”: “iIVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [

“<Figure size 576x360 with 1 Axes>"

82 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_delineate
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_delineate

NeuroKit2, Release 0.0.39

]

}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}
], “source”: [

“# Visualize P-peaks and T-peaksn”, “signal_dwt, waves_dwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="dwt",
show=True, show_type="peaks’)”

]
A
“cell_type”: “code”, “execution_count”: 18, “metadata”: {}, “outputs”: [
{
“data”: { “image/png”: “iIVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [
“<Figure size 576x360 with 1 Axes>"
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}

], “source”: [

“H# visualize T-wave boundariesn”, “signal_dwt, waves_dwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="dwt",
show=True, show_type="bounds_T")”

]
3 A
“cell_type”: “code”, “execution_count”: 21, “metadata”: {}, “outputs™: [
{
“data”: { “image/png”: “iVBORWOKGgoAAAANSUhEUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [
“<Figure size 576x360 with 1 Axes>"
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}

], “source”: [

. Extract and Visualize Individual Heartbeats 83

NeuroKit2, Release 0.0.39

“# Visualize P-wave boundariesn”, “signal_dwt, waves_dwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="dwt",
show=True, show_type="bounds_P’)”

]
3 A
“cell_type”: “code”, “execution_count”: 19, “metadata”: {}, “outputs™: [
{
“data”: { “image/png”: “iVBORWOKGgoAAAANSUhREUgAAAewAAAEXCAYAAAC+ipGRAAAABHN(
“text/plain”: [
“<Figure size 576x360 with 1 Axes>"
]
}, “metadata”: {
“needs_background”: “light”
}, “output_type”: “display_data”
}

], “source”: [

“# Visualize R-wave boundariesn”, “signal_dwt, waves_dwt =
nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="dwt",
show=True, show_type="bounds_R’)”

1
3 A
“cell_type”: “markdown”, “metadata”: {}, “source”: [
“Visually, from the plots above, the delineated outputs of DWT appear to be more ac-
curate than CWT, especially for the P-peaks and P-wave boundaries.n”, “n”, “Overall,
for this signal, the peak and DWT methods seem to be superior to the CWT.”
]
}

], “metadata”: {

9, 9 99, G

“kernelspec”: { “display_name”: “Python 3”, “language”: “python”, “name”: “python3”

}, “language_info”: {

99, ¢ ELINT3

“codemirror_mode”: { “name”: “ipython”, “version”: 3
29 3 2 (13 b2l 13

}, “file_extension”: “.py”, “mimetype’: “text/x-python”, “name”: “python”, ‘“nbcon-

CLINT

vert_exporter :

LT3 99, <

python”, “pygments_lexer”: “ipython3”, “version”: “3.7.3”

}

}, “nbformat”: 4, “nbformat_minor”: 2

84 Chapter 5. Examples

[11]:

[12]:

[12]:

NeuroKit2, Release 0.0.39

5.16 How to create epochs

So, in your experiment, participants undergo a number of trials (events) and these events are possibly of different
conditions. And you are wondering how can you locate these events on your signals and perhaps make them into
epochs for future analysis?

This example shows how to use Neurokit to extract epochs from data based on events localisation. In case you have
multiple data files for each subject, this example also shows you how to create a loop through the subject folders and
put the files together in an epoch format for further analysis.

: # Load NeuroKit and other useful packages

import
import

[}

% inline

= # Bigger images

In this example, we will use a short segment of data which has ECG, EDA and respiration (RSP) signals.

5.16.1 One signal with multiple event markings

Retrieve ECG data from data folder (sampling rate= 1000 Hz)

Besides the signal channels, this data also has a fourth channel which consists of a string of 0 and 5. This is a binary
marking of the Digital Input channel in BIOPAC.

Let’s visualize the event-marking channel below.

Visualize the event-marking channel

[<matplotlib.lines.Line2D at 0x2109054b6d8>]

5

0 2000 4000 6000 800D 10000 12000 14000

Depends on how you set up your experiment, the onset of the event can either be marked by signal going from O to 5
or vice versa. Specific to this data, the onsets of the events are marked where the signal in the event-marking channel
goes from 5 to 0 and the offsets of the events are marked where the signal goes from O to 5.

As shown in the above figure, there are four times the signal going from 5 to 0, corresponding to the 4 events (4 trials)
in this data.

5.16. How to create epochs 85

[13]:

[16]:

NeuroKit2, Release 0.0.39

There were 2 types (the condition) of images that were shown to the participant: “Negative” vs. “Neutral” in terms of
emotion. Each condition had 2 trials. The following list is the condition order.

Before we can epoch the data, we have to locate the events and extract their related information. This can be done
using Neurokit function events_find().

Find events

{'onset': array ([1024, 4957, 9224, 12984]),

'duration': array([300, 300, 300, 3001]),

'label': array(['l', '2', '3', '4'], dtype='<U1ll"),
'condition': ['Negative', 'Neutral', 'Neutral', 'Negative'l]}

The output of events_find() gives you a dictionary that contains the information of event onsets, event duration,
event label and event condition.

As stated, as the event onsets of this data are marked by event channel going from 5 to 0, the threshold_keep
is set to below. Depends on your data, you can customize the arguments in events_find() to correctly locate the
events.

You can use the events_plot() function to plot the events that have been found together with your event channel to
confirm that it is correct.

— Signal
=== 10

0 - - - |1

0 2000 4000 600D 800D 10000 12000 14000

Or you can visualize the events together with the all other signals.

86 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.events_find%3E
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.events_find%3E
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.events_find%3E
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.events_plot%3E

[19]:

NeuroKit2, Release 0.0.39

175

150

125

— ECG

10.0 EDA

—— Photosensor
75 | — RSP

---0

---1

50 1

25

il

L

LLLLLLLLLLRLLL

Trrrrrrere

1

—
—-—
-

_—
_—
-

ALLCLLELLETRL L AL LLRRTLLRLLLLLLLLL
P rrr e e rrrrrrrrrrrrrrrreeer
1

I LLLLLLLLLLLLLLLLLLLLLLLERLLLLL
¥ Trrreer L d g

L g g TITTrT

——
-

LALLL
Ll

———
-

0.0

0 2000 4000 6000 8000 14000
After you have located the events, you can now create epochs using the NeuroKit epochs_create() function. However,
we recommend to process your signal first before cutting them to smaller epochs. You can read more about processing

of physiological signals using NeuroKit in Custom your Processing Pipeline Example.

Process the signal

Now, let’s think about how we want our epochs to be like. For this example, we want:

second before the event onset

1. Epochs to start =1

Epochs to end %6 seconds* afterwards

These are passed into the epochs_start and epochs_end arguments, respectively.

Our epochs will then cover the region from -1 s to +6 s relative to the onsets of events (i.e., 700 data points since the
signal is sampled at 100Hz).

Build and plot epochs

s =

And as easy as that, you have created a dictionary of four dataframes, each correspond to an epoch of the event.

Here, in the above example, all your epochs have the same starting time and ending time, specified by
epochs_start and epochs_end. Nevertheless, you can also pass a list of different timings to these two ar-
guments to customize the duration of the epochs for each of your events.

5.16.2 One subject with multiple data files
In some experimental designs, instead of having one signal file with multiple events, each subject can have multiples
files where each file is the record of one event.

In the following example, we will show you how to create a loop through the subject folders and put the files together
in an epoch format for further analysis.

Firstly, let’s say your data is arranged as the following where each subject has a folder and in each folder there are
multiple data files corresponding to different events:

5.16. How to create epochs 87

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.epochs_create%3E
https://neurokit2.readthedocs.io/en/latest/examples/custom.html%3E

[21]:

NeuroKit2, Release 0.0.39

The following will illustrate how your analysis script might look like. Try to re-create such data structure and the
analysis script in your computer!

Now, in our analysis scripts, let’s load the necessary packages:

Load packages
import
import

Assuming that your working directory is now at your analysis script, and you want to read all the data files of
Subject_001.

Your analysis script should look something like below:

Your working directory should be at Experiment folder

List all data files in Subject_001 folder
B . +

Create an empty directory to store your files (events)

Loop through each file in the subject folder
in
Read the file
= . + + +
Add a Label column (e.g Label 1 for epoch 1)
= . +
Set index of data to time in seconds

= . /

Append the file into the dictionary
+ =

And tah dah! You now should have a dictionary called epochs that resembles the output of NeuroKit
epochs_create(). Each DataFrame in the epochs corresponds to an event (a trial) that Subject_001 underwent.

The epochs is now ready for further analysis!

88 Chapter 5. Examples

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.epochs_create%3E

NeuroKit2, Release 0.0.39

5.17 Complexity Analysis of Physiological Signals

A complex system, can be loosely defined as one that comprises of many components that interact with each other.
In science, this approach is used to investigate how relationships between a system’s parts results in its collective
behaviours and how the system interacts and forms relationships with its environment.

In recent years, there has been an increase in the use of complex systems to model physiological systems, such as for
medical purposes where the dynamics of physiological systems can distinguish which systems and healthy and which
are impaired. One prime example of how complexity exists in physiological systems is heart-rate variability (HRV),
where higher complexity (greater HRV) has been shown to be an indicator of health, suggesting enhanced ability to
adapt to environmental changes.

Although complexity is an important concept in health science, it is still foreign to many health scientists. This tutorial
aims to provide a simple guide to the main tenets of compexity analysis in relation to physiological signals.

5.17.1 Basic Concepts

Definitions

Complex systems are examples of nonlinear dynamical systems.

A dynamical system can be described by a vector of numbers, called its state, which can be represented by a point in
a phase space. In terms of physiology, this vector might include values of variables such as lung capacity, heart rate
and blood pressure. This state aims to provide a complete description of the system (in this case, health) at some point
in time.

The set of all possible states is called the state space and the way in which the system evolves over time (e.g., change
in person’s health state over time) can be referred to as trajectory.

After a sufficiently long time, different trajectories may evolve or converge to a common subset of state space called
an attractor. The presence and behavior of attractors gives intuition about the underlying dynamical systems. This
attractor can be a fixed-point where all trajectories converge to a single point (i.e., homoeostatic equilibrium) or it can
be periodic where trajectories follow a regular path (i.e., cyclic path).

Time-delay embedding

Nonlinear time-series analysis is used to understand, characterize and predict dynamical information about human
physiological systems. This is based on the concept of state-space reconstruction, which allows one to reconstruct
the full dynamics of a nonlinear system from a single time series (a signal).

One standard method for state-space reconstruction is time-delay embedding (or also known as delay-coordinate em-
bedding). It aims to identify the state of a system at a particular point in time by searching the past history of obser-
vations for similar states, and by studying how these similar states evolve, in turn predict the future course of the time
series.

In conclusion, the purpose of time-delay embeddings is to reconstruct the state and dynamics of an unknown dynam-
ical system from measurements or observations of that system taken over time.

In this gif here, you can see how the phase space is constructed by plotting delayed signals against the original
signal (where each time series is an embedded version i.e., delayed version of the original). Each point in the 3D
reconstruction can be thought of as a time segment, with different points capturing different segments of history of
variable X. Credits go to this short illustration.

5.17. Complexity Analysis of Physiological Signals 89

https://www.youtube.com/watch?v=QQwtrWBwxQg

NeuroKit2, Release 0.0.39

Embedding Parameters
For the reconstructed dynamics to be identical to the full dynamics of the system, some basic parameters need to be
optimally determined for time-delayed embedding:

¢ Time delay: tau,

— A measure of time that sets basic delay

Generates the respective axes of the reconstruction: x(1), x(t-tau), x(t-2tau). . .

E.g., if tau=1, the state x(z) would be plotted against its prior self x(z-1)

If is too small, constructed signals are too much alike and if too large, the reconstructed trajectory

will show connections between states very far in the past and to those far in the future (no relationship), which might
make the reconstruction extremely complex

¢ Embedding dimension, m
— Number of vectors to be compared (i.e. no. of additional signals of time delayed values of tau)

— Dictates how many axes will be shown in the reconstruction space i.e. how much of the system’s history
is shown

— Dimensionality must be sufficiently high to generate relevant information and create a rich history of
states over time, but also low enough to be easily understandable

* Tolerance threshold, r
— Tolerance for accepting similar patterns
Visualize Embedding

This is how a typical sinusoidal signal looks like, when embedded in 2D and 3D respectively.

90 Chapter 5. Examples

NeuroKit2, Release 0.0.39

0.6

0.4

0.2

0.0

x(t)

—0.2 4

—0.4 4

—0.6

T T T T T
0 2000 4000 6000 8000 10000

x(t-tau)

0.6

Using NeuroKit

There are different methods to guide the choice of parameters. In NeuroKit, you can use nk.
complexity_optimize () to estimate the optimal parameters, including time delay, embedding dimension and
tolerance threshold.

neurokit?2 nk

signal nk.signal_simulate (duration=10, frequency=1, noise=0.01)

parameters nk.complexity_optimize (signal, show=True)

parameters
{'delay': 3, 'dimension':

5.17. Complexity Analysis of Physiological Signals 91

NeuroKit2, Release 0.0.39

Otimization of Complexity Parameters

Optimization of Delay (tau)

—— Optimal delay: 22

»
°

Attractor

w
®

w
S

Mutual Information

o 20 40 60 80 100
Time Delay (tau)

Optimization of Dimension (d)

== o
0.8 —e— Ex(d)
—— optimal dimension: 6
0.6
0.4

2.5 5.0 75 10.0 125 15.0 17.5
Embedding dimension d
Optimization of Tolerence Threshold (r)

5
signal [i-44]

E1(d) and Ea(d)

0.4 —e— ApEn
—— optimal r: 0.014

Approximate Entropy ApEn

0.00 0.05 0.10 015 0.20 025
Tolerence threshold r

In the above example, the optimal time delay is estimated using the Mutual Information method (Fraser & Swinney,
1986), the optimal embedding dimension is estimated using the Average False Nearest Neighbour (Cao, 1997) and
the optimal r is obtained using the Maximum Approximate Entropy (Lu et al., 2008). These are the default methods in
nk.complexity_optimize (). Nevertheless, you can specify your preferred method via the method arguments.

More of these methods can be read about in this chapter here.

5.17.2 Entropy as measures of Complexity
The complexity of physiological signals can be represented by the entropy of these non-linear, dynamic physiological
systems.

Entropy can be defined as the measure of disorder in a signal.

Shannon Entropy (ShEn)

e call nk.entropy_shannon ()

Approximate Entropy (ApEn)

* Quantifies the amount of regularity and the unpredictability of fluctuations over time-series data.

* Advantages of ApEn: lower computational demand (can be designed to work for small data samples i.e. less
than 50 data points and can be applied in real time) and less sensitive to noise.

* Smaller values indicate that the data is more regular and predictable, and larger values corresponding to more
complexity or irregularity in the data.

e call nk.entropy_approximate ()

Examples of use

92 Chapter 5. Examples

https://personal.egr.uri.edu/chelidz/documents/mce567_Chapter_7.pdf

NeuroKit2, Release 0.0.39

Refer- Signal Parameters Findings

ence

Caldirola | 17min breath-by-breath | m=1, r=0.2 Panic disorder patients showed higher ApEn in-
et al. | recordings of respiration dexes in baseline RSP patterns (all parameters)
(2004) parameters than healthy subjects

Burioka 30 mins of Respiration, | m=2, r=0.2, =1.1s | Lower ApEn of respiratory movement and EEG
et al. | 20s recordings of EEG for respiration, 0.09s | in stage IV sleep than other stages of conscious-
(2003) for EEG ness

Boettger | 64s recordings of QT and | m=2, r=0.2 Higher ratio of ApEn(QT) to ApEn(RR) for
et al. | RR intervals higher intensities of exercise, reflecting sympa-
(2009) thetic activity

Taghavi 2mis recordings of EEG m=2, r=0.1 Higher ApEn of normal subjects than
et al. schizophrenic patients particularly in limbic
(2011) areas of the brain

Sample Entropy (SampEn)

* A modification of approximate entropy

* Advantages over ApEn: data length independence and a relatively trouble-free implementation.

» Large values indicate high complexity whereas smaller values characterize more self-similar and regular signals.

e call nk.entropy_sample ()

Examples of use

Refer- Signal Pa- Findings
ence ram-

eters
Lake 25min recordings | m=3, | SampEn is lower in the course of neonatal sepsis and sepsislike illness
et al. | of RR intervals r=0.2
(2002)
Lake 24h recordings of | m=1, | In patients over 40 years old, SampEn has high degrees of accuracy
et al. | RR intervals r=to in distinguishing atrial fibrillation from normal sinus thythm in 12-beat
(2011) vary calculations performed hourly
Estrada | EMG diaphragm | m=1, | fSampEn (fixed SampEn) method to extract RSP rate from respiratory
et al. | signal r=0.3 | EMG signal
(2015)
Kapidzic | RR intervals and | m=2, | During paced breathing, significant reduction of SampEn(Resp) and
et al. | its corresponding | r=0.2 | SampEn(RR) with age in male subjects, compared to smaller and non-
(2014) RSP signal significant SampEn decrease in females
Abdsolo | Smin recordings | m=1, | Alzheimer’s Disease patients had lower SampEn than controls in pari-
et al. | of EEG in 5 | r=0.25| etal and occipital regions
(2006) second epochs

5.17. Complexity Analysis of Physiological Signals

93

NeuroKit2, Release 0.0.39

Fuzzy Entropy (FuzzyEn)
 Similar to ApEn and SampEn
e call nk.entropy_fuzzy ()

Multiscale Entropy (MSE)

» Expresses different levels of either ApEn or SampEn by means of multiple factors for generating multiple time
series

* Captures more useful information than using a scalar value produced by ApEn and SampEn

e call nk.entropy_multiscale ()

5.17.3 Detrended Fluctuation Analysis (DFA)

5.18 Analyze Electrooculography EOG data (eye blinks, saccades,
etc.)

: # This is temporary to load the dev version of NK, needs to be removed once it's in_,

—master
import

import
import
import
import

= # Increase plot size

5.18.1 Explore the EOG signal

Let’s load the example dataset corresponding to a vertical EOG signal.

= . # Extract the only column as a vector

94 Chapter 5. Examples

NeuroKit2, Release 0.0.39

= Signal
0.00015 -
0.00010 -
0.00005 -
0.00000 -
~0.00005
-0.00010
-0.00015 1
0 2000 4000 5000 8000 10000 12000
Samples
Let’s zoom in to some areas where clear blinks are present.
[48]: . 100 1700
= Signal
0.00015 -
0.00010 -
0.00005 -
0.00000 -
~0.00005
0 200 400 600 800 1000 1200 1400 1600

Samples

5.18. Analyze Electrooculography EOG data (eye blinks, saccades, etc.) 95

NeuroKit2, Release 0.0.39

5.18.2 Clean the signal

We can now filter the signal to remove some noise and trends.

[49]: = =100 =

Let’s visualize the same chunk and compare the clean version with the original signal.

[50]: . 100 1700 100 1700

0.00015 |

0.00010 |

0.00005 |
|I|
|

0.00000 |

-0.00005 1

0 200 400 €00 800 1000 1200 1400 1600
Samples

5.18.3 Detect and visualize eye blinks

We will nor run a peak detection algorithm to detect peaks location.

[54]: = c =100 =

[54]: array ([277, 430, 562, 688, 952, 1378, 1520, 1752, 3353,
3783, 3928, 4031, 4168, 4350, 4723, 4878, 5213, 5365,
5699, 5904, 6312, 6539, 6714, 7224, 7382, 7553, 7827,
8014, 8154, 8312, 8626, 8702, 9140, 9425, 9741, 9948,
10142, 10230, 10368, 10708, 10965, 11256, 11683, 117757,
dtype=int64)

[79]: = 5 # Convert to 2D array
= . # Rescale so that all the blinks are on the same scale

Plot with their median (used here as a robust average)
(continues on next page)

96 Chapter 5. Examples

NeuroKit2, Release 0.0.39

(continued from previous page)

[79]: [<matplotlib.lines.Line2D at 0x18fc51f7e50>]

3

5.19 Fit a function to a signal

This small tutorial will show you how to use Python to estimate the best fitting line to some data. This can be used to
find the optimal line passing through a signal.

[4]: # Load packages
import
import
import
import
import

= # Increase plot size

5.19. Fit a function to a signal 97

[7]:

[17]:

NeuroKit2, Release 0.0.39

5.19.1 Fit a linear function

We will start by generating some random data on a scale from O to 10 (the x-axis), and then pass them through a
function to create its y values.

= * + +

[<matplotlib.lines.Line2D at 0x2137926a4f0>]

10

=10 L]

No in this case we know that the best fitting line will be a linear function (i.e., a straight line), and we want to find its
parameters. A linear function has two parameters, the intercept and the slope.

First, we need to create this function, that takes some x values, the parameters, and return the y value.

Now, using the power of scipy, we can optimize this function based on our data to find the parameters that minimize
the least square error. It just needs the function and the data’s x and y values.

array ([5.16622964, 2.46102004])

So the optimal parameters (in our case, the intercept and the slope) are returned in the params object. We can unpack

these parameters (using the star symbol *) into our linear function to use them, and create the predicted y values to our
X axis.

(continues on next page)

98 Chapter 5. Examples

NeuroKit2, Release 0.0.39

(continued from previous page)

[17]: [<matplotlib.lines.Line2D at 0x21379293370>]

20 4

-10

5.19.2 Non-linear curves

We can also use that to approximate non-linear curves.

[22]: = o =50

5.19. Fit a function to a signal 99

[34]:

NeuroKit2, Release 0.0.39

20

18

16

14

12

10

—— Signal

Samples

400 500

In this example, we will try to approximate this Skin Conductance Response (SCR) using a gamma distribution, which

is quite a flexible distribution defined by 3 parameters (a, loc and scale).

On top of these 3 parameters, we will add 2 more, the intercept and a size parameter to give it more flexibility.

100

Chapter 5. Examples

https://github.com/neuropsychology/NeuroKit/pull/269

[35]:

[36]:

NeuroKit2, Release 0.0.39

—— Signal
18
16
14
12
10
0 100 200 300 400 500

Samples

Since these values are already a good start, we will use them as “starting point” (through the pO argument), to help the
estimation algorithm converge (otherwise it could never find the right combination of parameters).

array ([0.9518406 , 2.21035698, 1.05863983, 2.16432609, 1.97046573])

[<matplotlib.lines.Line2D at 0x2137cf92f40>]

5.19. Fit a function to a signal 101

NeuroKit2, Release 0.0.39

20
i{ \\‘..
18 { "

16 Y

14
124
10 4 —_—
o
a
T T T T T T T T T
0.0 25 5.0 715 1000 125 1.0 17.5 2000

102 Chapter 5. Examples

CHAPTER
SIX

RESOURCES

Contents:

6.1 Recording good quality signals

Hint: Spotted a typo? Would like to add something or make a correction? Join us by contributing (see this tutorial).

This tutorial is a work in progress.

6.1.1 Recording

¢ Electrocardiogram (ECG) electrodes placement
* Facial EMG electrodes placement
* RSP belt placement

* Best Practices for Collecting Physiological Data

6.1.2 Signal quality

* Improving Data Quality of ECG
* Improving Data Quality of EDA

6.1.3 Artifacts and Anomalies

¢ Identifying and Handling Cardiac Arrhythmia

103

https://neurokit2.readthedocs.io/en/latest/tutorials/contributing.html
https://www.youtube.com/watch?v=g5-39qux0Sc&feature=emb_title
https://www.youtube.com/watch?v=iDzcGWIGfVQ&feature=emb_title
https://www.youtube.com/watch?v=eDIJ7AiKu8s&feature=emb_title
https://phys2bids.readthedocs.io/en/latest/bestpractice.html
https://support.mindwaretech.com/2017/12/improving-data-quality-ecg/
https://support.mindwaretech.com/2017/12/improving-data-quality-eda/
https://support.mindwaretech.com/2016/10/all-about-ecg-part-5-identifying-and-handling-cardiac-arrhythmia/

NeuroKit2, Release 0.0.39

6.2 What software for physiological signal processing

Hint: Spotted a typo? Would like to add something or make a correction? Join us by contributing (see this tutorial).

If you’re here, it’s probably that you have (or plan to have) some physiological data (aka biosignals, e.g., ECG for
cardiac activity, RSP for respiration, EDA for electrodermal activity, EMG for muscle activity etc.), that you plan to
process and analyze these signals and that you don’t know where to start. Whether you are an undergrad, a master
or PhD student, a postdoc or a full professor, you’re at the right place.

So let’s discuss a few things to consider to best decide on your options.

6.2.1 Software vs. programming language (packages)

In this context, a software would be a program that you download, install (through some sort of .exe file), and start
similarly to most of the other programs installed on our computers.

They are appealing because of their (apparent) simplicity and familiarity of usage: you can click on icons and menus
and you can see all the available options, which makes it easy for exploration. In a way, it also feels safe, because you
can always close the software, press “do not save the changes”, and start again.

Unfortunately, when it comes to science, this comes with a set of limitations; they are in general quite expensive,
are limited to the set of included features (it’s not easy to use one feature from one software, and then another from
another one), have a slow pace of updates (and thus often don’t include the most recent and cutting-edge algorithms,
but rather well-established ones), and are not open-source (and thus prevent to run fully reproducible analyses).

* Software for biosignals processing
— AcgKnowledge: General physiological analysis software (ECG, PPG, RSP, EDA, EMG, ...).
— Kubios: Heart-rate variability (HRV).

Unfortunately, it’s the prefered option for many researchers. Why? For Pls, it’s usually because they are established
tools backed by some sort of company behind them, with experts, advertisers and sellers that do their job well. The
companies also offer some guaranty in terms of training, updates, issues troubleshooting, etc. For younger researchers
starting with physiological data analysis, it’s usually because they don’t have much (or any) experience with pro-
gramming languages. They feel like there is already a lot of things to learn on the theorethical side of physiological
signal processing, so they don’t want to add on top of that, learning a programming language.

However, it is important to understand that you don’t necessarily have to know how to code to use some of the
packages. Moreover, some of them include a GUI (see below), which makes them very easy to use and a great
alternative to the software mentioned above.

Note: TLDR; Closed proprietary software, even though seemlingly appealing, might not a good investement of time
or money.

104 Chapter 6. Resources

https://neurokit2.readthedocs.io/en/latest/tutorials/contributing.html
https://www.biopac.com/product/acqknowledge-software/
https://www.kubios.com/

NeuroKit2, Release 0.0.39

6.2.2 GUI vs. code

TODO.

* Packages with a GUI

Ledalab: EDA (Matlab).
PsPM: Primarly EDA (Matlab).
biopeaks: ECG, PPG (Python).
mnelab: EEG (Python).

Note: TLDR; While GUIs can be good alternatives and a first step to dive into programming language-based tools,
coding will provide you with more freedom, incredible power and the best fit possible for your data and issues.

6.2.3 Matlab vs. Python vs. R vs. Julia

What is the best programming language for physiological data analysis?

Matlab is the historical main contender. However... TODO.

* Python-based packages

NeuroKit2: ECG, PPG, RSP, EDA, EMG.
BioSPPy: ECG, RSP, EDA, EMG.
PySiology: ECG, EDA, EMG.
pyphysio: ECG, PPG, EDA.
HeartPy: ECG.

hrv: ECG.

hrv-analysis: ECG.

pyhrv: ECG.

py-ecg-detectors: ECG.

Systole: PPG.

eda-explorer: EDA.

Pypsy: EDA.

MNE: EEG.

tensorpac: EEG.

PyGaze: Eye-tracking.

PyTrack: Eye-tracking.

* Matlab-based packages

BreatheEasyEDA: EDA.
EDA: EDA.
unfold: EEG.

6.2. What software for physiological signal processing

105

http://www.ledalab.de/
https://bachlab.github.io/PsPM/
https://github.com/JanCBrammer/biopeaks
https://github.com/cbrnr/mnelab
https://github.com/neuropsychology/NeuroKit
https://github.com/PIA-Group/BioSPPy
https://github.com/Gabrock94/Pysiology
https://github.com/MPBA/pyphysio
https://github.com/paulvangentcom/heartrate_analysis_python
https://github.com/rhenanbartels/hrv
https://github.com/Aura-healthcare/hrvanalysis
https://github.com/PGomes92/pyhrv
https://github.com/berndporr/py-ecg-detectors
https://github.com/embodied-computation-group/systole
https://github.com/MITMediaLabAffectiveComputing/eda-explorer
https://github.com/brennon/Pypsy
https://github.com/mne-tools/mne-python
https://github.com/EtienneCmb/tensorpac
https://github.com/esdalmaijer/PyGaze
https://github.com/titoghose/PyTrack
https://github.com/johnksander/BreatheEasyEDA
https://github.com/mateusjoffily/EDA
https://github.com/unfoldtoolbox/unfold

NeuroKit2, Release 0.0.39

6.3 Additional Resources

Hint: Would like to add something? Join us by contributing (see this tutorial).

6.3.1 General Neuroimaging

» Seven quick tips for analysis scripts in neuroimaging (van Vliet, 2020).

» Neuroimaging tutorials and resources

6.3.2 ECG

 Improving Data Quality: ECG

* Understanding ECG waves

* Analysing a Noisy ECG Signal

* All About HRV Part 4: Respiratory Sinus Arrhythmia

6.3.3 EDA

 Improving Data Quality: EDA
e All About EDA Part 1: Introduction to Electrodermal Activity
e All About EDA Part 2: Components of Skin Conductance

* Skin Conductance Response — What it is and How to Measure it

6.3.4 EEG

¢ Electroencephalogram (EEG) Recording Protocol (Farrens et al., 2019)

* Compute the average bandpower of an EEG signal

106

Chapter 6. Resources

https://neurokit2.readthedocs.io/en/latest/tutorials/contributing.html
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007358
https://.github.io/tutorials-and-resources/
https://support.mindwaretech.com/2017/12/improving-data-quality-ecg/
https://ecgwaves.com/topic/ecg-normal-p-wave-qrs-complex-st-segment-t-wave-j-point/
https://github.com/paulvangentcom/heartrate_analysis_python/blob/master/examples/5_noisy_ECG/Analysing_Noisy_ECG.ipynb
https://support.mindwaretech.com/2017/09/all-about-hrv-part-4-respiratory-sinus-arrhythmia/
https://support.mindwaretech.com/2017/12/improving-data-quality-eda/
https://support.mindwaretech.com/2017/12/all-about-eda-part-1-introduction-to-electrodermal-activity/
https://support.mindwaretech.com/2018/04/all-about-eda-part-2-components-of-skin-conductance/
https://imotions.com/blog/skin-conductance-response/
https://protocolexchange.researchsquare.com/article/pex-779/v2
https://raphaelvallat.com/bandpower.html

CHAPTER
SEVEN

FUNCTIONS

7.1 ECG

Submodule for NeuroKit.

ecg_analyze (data, sampling_rate=1000, method="auto")
Performs ECG analysis on either epochs (event-related analysis) or on longer periods of data such as resting-
state data.

Parameters

e data (Union/dict, pd.DataFrame]) — A dictionary of epochs, containing one DataFrame
per epoch, usually obtained via epochs_create(), or a DataFrame containing all epochs,
usually obtained via epochs_to_df{). Can also take a DataFrame of processed signals
from a longer period of data, typically generated by ecg_process() or bio_process(). Can
also take a dict containing sets of separate periods of data.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).
Defaults to 1000Hz.

* method (str) — Can be one of ‘event-related’ for event-related analysis on epochs, or
‘interval-related” for analysis on longer periods of data. Defaults to ‘auto’ where the
right method will be chosen based on the mean duration of the data (‘event-related’ for
duration under 10s).

Returns DataFrame — A dataframe containing the analyzed ECG features. If event-related anal-
ysis is conducted, each epoch is indicated by the Label column. See ecg_eventrelated() and
ecg_intervalrelated() docstrings for details.

See also:

bio_process(), ecg_process (), epochs_create(), ecg_eventrelated(),
ecg_intervalrelated()

Examples

neurokit2 as nk

data nk.data ("bio_eventrelated_100hz")

df, info nk.bio_process (ecg=data["ECG"], sampling rate=100)
events nk.events_find(data["Photosensor"], threshold_keep='below',

continues on next page

107

NeuroKit2, Release 0.0.39

(continued from previous page)

event_conditions=["Negative", "Neutral",
"Neutral", "Negative"])
epochs nk.epochs_create (df, events, sampling rate=100, epochs_start
epochs_end=1.9)

nk.ecg_analyze (epochs, sampling_rate
mpletio tricular ECG_Quality M

[4 rows x 17 columns] >>> >>> # Example 2: Download the resting-state data >>> data =
nk.data(“bio_resting_5min_100hz”) >>> >>> # Process the data >>> df, info = nk.ecg_process(data[“ECG™],
sampling_rate=100) >>> >>> # Analyze >>> nk.ecg_analyze(df, sampling_rate=100) #doctest: +ELLIPSIS

ECG_Rate_Mean HRV_RMSSD ...
0...
[1 rows x 37 columns]

ecg_clean (ecg_signal, sampling_rate=1000, method="neurokit’)
Clean an ECG signal.

Prepare a raw ECG signal for R-peak detection with the specified method.
Parameters
» ecg_signal (Union[list, np.array, pd.Series]) — The raw ECG channel.

» sampling_rate (inf) — The sampling frequency of ecg_signal (in Hz, i.e., sam-
ples/second). Defaults to 1000.

* method (str) — The processing pipeline to apply. Can be one of ‘neurokit’ (default),
‘biosppy’, ‘pamtompkins1985°, ‘hamilton2002’, ‘elgendi2010’, ‘engzeemod2012’.

Returns array — Vector containing the cleaned ECG signal.
See also:

ecg_findpeaks(),signal_rate (), ecg _process(),ecg_plot ()

Examples

pandas as pd
neurokit2 as nk
matplotlib.pyplot as plt

ecg nk.ecg_simulate (duration-10, sampling_rate

signals pd.DataFrame ({"ECG_Raw" : ecqg,

"ECG_NeuroKit" : nk.ecg_clean(ecg, sampling_rate
method="neurokit"),

"ECG_BioSPPy" : nk.ecg_clean(ecg, sampling_ rate=1000,
method="biosppy"),

"ECG_PanTompkins" : nk.ecg_clean(ecg, sampling_
rate=1000, method="pantompkins1985"),

"ECG_Hamilton" : nk.ecg_clean(ecg, sampling_rate

(continues on next page

108 Chapter 7. Functions

NeuroKit2, Release 0.0.39

(continued from previous page)

"ECG_Elgendi" : nk.ecg_clean(ecg, sampling_rate=1000,
method="elgendi2010"),
"ECG_EngZeeMod" : nk.ecg_clean(ecg, sampling_

rate=1000, method="engzeemod2012") })
>>> si ls.plot ()
otlib.axes._subplots.A:

References

e Jiapu Pan and Willis J. Tompkins. A Real-Time QRS Detection Algorithm. In: IEEE Transactions on
Biomedical Engineering BME-32.3 (1985), pp. 230-236.

* Hamilton, Open Source ECG Analysis Software Documentation, E.P.Limited, 2002.

ecg_delineate (ecg_cleaned, rpeaks=None, sampling_rate=1000, method='peak’, show=False,

show_type="peaks’, check=False)
Delineate QRS complex.

Function to delineate the QRS complex.

* Cardiac Cycle: A typical ECG heartbeat consists of a P wave, a QRS complex and a T wave. The P
wave represents the wave of depolarization that spreads from the SA-node throughout the atria. The QRS
complex reflects the rapid depolarization of the right and left ventricles. Since the ventricles are the largest
part of the heart, in terms of mass, the QRS complex usually has a much larger amplitude than the P-wave.
The T wave represents the ventricular repolarization of the ventricles.On rare occasions, a U wave can
be seen following the T wave. The U wave is believed to be related to the last remnants of ventricular
repolarization.

Parameters

* ecg_cleaned (Union/[list, np.array, pd.Series]) — The cleaned ECG channel as returned
by ecg_clean().

* rpeaks (Union/[list, np.array, pd.Series]) — The samples at which R-peaks occur. Acces-
sible with the key “ECG_R_Peaks” in the info dictionary returned by ecg_findpeaks().

o sampling_rate (int) — The sampling frequency of ecg_signal (in Hz, ie., sam-
ples/second). Defaults to 500.

* method (str) — Can be one of ‘peak’ (default) for a peak-based method, ‘cwt’ for contin-
uous wavelet transform or ‘dwt’ for discrete wavelet transform.

* show (bool) — If True, will return a plot to visualizing the delineated waves information.
» show_type (str) — The type of delineated waves information showed in the plot.
¢ check (bool) — Defaults to False.

Returns

* waves (dict) — A dictionary containing additional information. For derivative method,
the dictionary contains the samples at which P-peaks, Q-peaks, S-peaks, T-peaks, P-
onsets and T-offsets occur, accessible with the key “ECG_P_Peaks”, “ECG_Q_Peaks”,
“ECG_S_Peaks”, “ECG_T_Peaks”, “ECG_P_Onsets”, “ECG_T_Offsets” respectively.

For wavelet methods, the dictionary contains the samples at which P-peaks, T-peaks,
P-onsets, P-offsets, T-onsets, T-offsets, QRS-onsets and QRS-offsets occur, accessible
with the key “ECG_P_Peaks”, “ECG_T_Peaks”, “ECG_P_Onsets”, “ECG_P_Offsets”,

7.1. ECG 109

NeuroKit2, Release 0.0.39

“ECG_T_Onsets”, “ECG_T_Offsets”, “ECG_R_Onsets”, “ECG_R_Offsets” respec-
tively.

* signals (DataFrame) — A DataFrame of same length as the input signal in which oc-
curences of peaks, onsets and offsets marked as “1” in a list of zeros.
See also:

ecg_clean(), signal_fixpeaks (), ecg _peaks(), signal_rate(), ecg_process(),
ecg_plot ()

Examples

neurokit2 as nk

ecg nk.ecg_simulate (duration=10, sampling_rate

cleaned nk.ecg_clean(ecg, sampling rate=1000)

_, rpeaks nk.ecg_peaks (cleaned)

signals, waves nk.ecg_delineate (cleaned, rpeaks, sampling_rate=1000, method
"peak")

nk.events_plot (waves ["ECG_P_Peaks"], cleaned)
<Figure ...>

nk.events_plot (waves ["ECG_T_Peaks"], cleaned)
<Figure ...>

References

e Martinez, J. P., Almeida, R., Olmos, S., Rocha, A. P., & Laguna, P. (2004). A wavelet-based ECG
delineator: evaluation on standard databases. IEEE Transactions on biomedical engineering, 51(4), 570-
581.

ecg_eventrelated (epochs, silent=False)
Performs event-related ECG analysis on epochs.
Parameters

* epochs (Union[dict, pd.DataFrame]) — A dict containing one DataFrame per event/trial,
usually obtained via epochs_create(), or a DataFrame containing all epochs, usually ob-
tained via epochs_to_df{().

* silent (bool) — If True, silence possible warnings.
Returns

DataFrame — A dataframe containing the analyzed ECG features for each epoch, with each
epoch indicated by the Label column (if not present, by the Index column). The analyzed
features consist of the following:

e "ECG_Rate_Max”: the maximum heart rate after stimulus onset.

e "ECG_Rate_Min”: the minimum heart rate after stimulus onset.

e "ECG_Rate_Mean”: the mean heart rate after stimulus onset.

e "ECG_Rate_Max_Time”: the time at which maximum heart rate occurs.

e "ECG_Rate_Min_Time”: the time at which minimum heart rate occurs.

110 Chapter 7. Functions

NeuroKit2, Release 0.0.39

* "ECG_Phase_Atrial”: indication of whether the onset of the event concurs with respira-
tory systole (1) or diastole (0).

e "ECG_Phase_Ventricular”: indication of whether the onset of the event concurs with
respiratory systole (1) or diastole (0).

* "ECG_Phase_Atrial_Completion”: indication of the stage of the current cardiac (atrial)
phase (0 to 1) at the onset of the event.

* "ECG_Phase_Ventricular_Completion”: indication of the stage of the current cardiac
(ventricular) phase (0 to 1) at the onset of the event.

We also include the following experimental features related to the parameters of a quadratic
model:

* "ECG_Rate_Trend_Linear”: The parameter corresponding to the linear trend.
* "ECG_Rate_Trend_Quadratic”: The parameter corresponding to the curvature.

* "ECG_Rate_Trend_R2”: the quality of the quadratic model. If too low, the parameters
might not be reliable or meaningful.

See also:

events_find (), epochs_create(),bio_process/()

Examples

neurokit2 as nk

ecg, info nk.ecg_process (nk.ecg_simulate (duration=20))

epochs nk.epochs_create(ecg, events=[5000, 10000, 15000],
epochs_start=-0.1, epochs_end=1.9)
nk.ecg_eventrelated (epochs)
Label Event_Onset ... ECG_Phase_Completion_Ventricular ECG_Quality_Mean
1

[3 rows x 16 columns] >>> >>> # Example with real data >>> data = nk.data(“bio_eventrelated_100hz”)
>>> >>> # Process the data >>> df, info = nk.bio_process(ecg=data[“ECG”], sampling_rate=100) >>>
events = nk.events_find(data[“Photosensor”], ... threshold_keep="below’, ... event_conditions=[“Negative”,
“Neutral”, ... “Neutral”, “Negative”]) >>> epochs = nk.epochs_create(df, events, sampling_rate=100, ...
epochs_start=-0.1, epochs_end=1.9) >>> nk.ecg_eventrelated(epochs) #doctest: +ELLIPSIS

Label Condition ... ECG_Phase_Completion_Ventricular ECG_Quality_Mean
1 1 Negative 22 Neutral 33 Neutral 4 4 Negative
[4 rows x 17 columns]

ecg_findpeaks (ecg_cleaned, sampling_rate=1000, method='"neurokit', show=False)
Find R-peaks in an ECG signal.

Low-level function used by ecg_peaks() to identify R-peaks in an ECG signal using a different set of algorithms.
See ecg_peaks() for details.

Parameters

7.1. ECG 111

NeuroKit2, Release 0.0.39

ecg_cleaned (Union/[list, np.array, pd.Series]) — The cleaned ECG channel as returned
by ecg_clean().

sampling_rate (int) — The sampling frequency of ecg_signal (in Hz, i.e., sam-
ples/second). Defaults to 1000.

method (string) — The algorithm to be used for R-peak detection. Can be one of ‘neu-
rokit’ (default), ‘pamtompkins1985°, ‘hamilton2002’, ‘christov2004’, ‘gamboa2008’,
‘elgendi2010’, ‘engzeemod2012’, ‘kalidas2017’, ‘martinez2003’, ‘rodrigues2020’ or
‘promac’.

show (bool) —If True, will return a plot to visualizing the thresholds used in the algorithm.
Useful for debugging.

Returns info (dict) — A dictionary containing additional information, in this case the samples at
which R-peaks occur, accessible with the key “ECG_R_Peaks”.

See also:

ecg_clean(), signal_fixpeaks(), ecqg_peaks (), ecg_rate(), ecg_process (),
ecg_plot ()

Examples

neurokit2 as nk

ecg nk.ecg_simulate (duration=10, sampling rate=1000)

cleaned nk.ecg_clean(ecg, sampling_ rate=1000)
info nk.ecg_findpeaks (cleaned)

nk.events_plot (info["ECG_R_Peaks"], cleaned)
<Figure >

neurokit nk.ecg_findpeaks (nk.ecg_clean (ecg, method="neurokit"), method
"neurokit")

pantompkins1985 nk.ecg_findpeaks (nk.ecg_clean(ecg, method="pantompkinsl1985
"), method="pantompkinsl1985")

hamilton2002 nk.ecg_findpeaks (nk.ecg_clean (ecg, method="hamilton2002"),
method="hamilton2002")

martinez2003 nk.ecg_findpeaks (cleaned, method="martinez2003")

christov2004 nk.ecg_findpeaks (cleaned, method="christov2004")

gamboa2008 nk.ecg_findpeaks (nk.ecg_clean (ecg, method="gamboa2008"), method
"gamboa2008")

elgendi2010 nk.ecg_findpeaks (nk.ecg_clean (ecg, method="elgendi2010"),
method="elgendi2010"

engzeemod2012 nk.ecg_findpeaks (nk.ecg_clean(ecg, method="engzeemod2012"),
method="engzeemod2012")

kalidas2017 nk.ecg_findpeaks (nk.ecg_clean(ecg, method="kalidas2017"),
method="kalidas2017"

rodrigues2020 nk.ecg_findpeaks (cleaned, method="rodrigues2020")

nk.events_plot ([neurokit ["ECG_R_Peaks"],
pantompkins1985["ECG_R_Peaks"],
hamilton2002["ECG_R_Peaks"],
christov2004["ECG_R_Peaks"],
gamboa2008 ["ECG_R_Peaks"],

(continues on next page

112 Chapter 7. Functions

NeuroKit2, Release 0.0.39

(continued from previous page)

elgendi2010["ECG_R_Peaks"],
engzeemod2012 ["ECG_R_Peaks"],
kalidas2017["ECG_R_Peaks"],
martinez2003 ["ECG_R_Peaks"],
rodrigues2020["ECG_R_Peaks"]], cleaned)

nk.ecg_simulate (duration=10, sampling_ rate=500)
nk.signal_distort (ecg,
sampling_rate=500,
noise_amplitude=0.2, noise_frequency-=[25, 50],
artifacts_amplitude=0.2, artifacts_frequency-50)
nk.ecg_findpeaks (ecg, sampling_ rate=1000, method-"promac", show-True)
{'ECG_R_Peaks': co))

References
e Gamboa, H. (2008). Multi-modal behavioral biometrics based on hci and electrophysiology. PhD The-
sisUniversidade.

* Zong, W., Heldt, T., Moody, G. B., & Mark, R. G. (2003, September). An open-source algorithm to detect
onset of arterial blood pressure pulses. In Computers in Cardiology, 2003 (pp. 259-262). IEEE.

* Hamilton, Open Source ECG Analysis Software Documentation, E.P.Limited, 2002.

e Pan,J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE transactions on biomedical
engineering, (3), 230-236.

* Engelse, W. A. H., & Zeelenberg, C. (1979). A single scan algorithm for QRS detection and feature
extraction [IEEE Comput Cardiol. Long Beach: IEEE Computer Society.

* Lourengo, A., Silva, H., Leite, P., Lourengo, R., & Fred, A. L. (2012, February). Real Time Electrocar-
diogram Segmentation for Finger based ECG Biometrics. In Biosignals (pp. 49-54).
ecg_intervalrelated (data, sampling_rate=1000)
Performs ECG analysis on longer periods of data (typically > 10 seconds), such as resting-state data.
Parameters

» data (Union[dict, pd.DataFrame]) — A DataFrame containing the different processed
signal(s) as different columns, typically generated by ecg_process() or bio_process().
Can also take a dict containing sets of separately processed DataFrames.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).
Returns

DataFrame — A dataframe containing the analyzed ECG features. The analyzed features con-
sist of the following:

e "ECG_Rate_Mean”: the mean heart rate.
e "ECG_HRV”: the different heart rate variability metrices.
See hrv_summary() docstrings for details.
See also:

bio_process (), ecqg eventrelated()

7.1. ECG 113

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

data nk.data ("bio_resting_5min_100hz")

info nk.ecg_process (data["ECG"], sampling_rate=100)

intervalrelated(df, sampling_rate=100)
e_Mean HRV_RMSSD

[1 rows x 55 columns] >>> >>> epochs = nk.epochs_create(df, events=[0, 15000], sampling_rate=100, ...
epochs_end=150) >>> nk.ecg_intervalrelated(epochs) #doctest: +ELLIPSIS

ECG_Rate_Mean HRV_RMSSD ...
1...
[2 rows x 55 columns]

ecg_peaks (ecg_cleaned, sampling_rate=1000, method="neurokit', correct_artifacts=False)
Find R-peaks in an ECG signal.

Find R-peaks in an ECG signal using the specified method.
Parameters

* ecg_cleaned (Union/[list, np.array, pd.Series]) — The cleaned ECG channel as returned
by ecg_clean().

» sampling_rate (inf) — The sampling frequency of ecg_signal (in Hz, ie., sam-
ples/second). Defaults to 1000.

* method (string) — The algorithm to be used for R-peak detection. Can be one of ‘neu-
rokit’ (default), ‘pamtompkins1985’, ‘hamilton2002’, ‘christov2004’, ‘gamboa2008’,
‘elgendi2010’, ‘engzeemod2012’ or ‘kalidas2017°.

* correct_artifacts (bool) — Whether or not to identify artifacts as defined by Jukka A.
Lipponen & Mika P. Tarvainen (2019): A robust algorithm for heart rate variability time
series artefact correction using novel beat classification, Journal of Medical Engineering
& Technology, DOI: 10.1080/03091902.2019.1640306.

Returns

* signals (DataFrame) — A DataFrame of same length as the input signal in which oc-
curences of R-peaks marked as “1” in a list of zeros with the same length as ecg_cleaned.
Accessible with the keys “ECG_R_Peaks”.

* info (dict) — A dictionary containing additional information, in this case the samples at
which R-peaks occur, accessible with the key “ECG_R_Peaks”.

See also:

ecg_clean(), ecqg_findpeaks (), ecqg_process (), ecg_plot (), signal_rate(),
signal_fixpeaks()

114 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

Yele| nk.ecg_simulate (duration=10, sampling_rate=1000)

cleaned nk.ecg_clean(ecg, sampling_rate=1000)

signals, info nk.ecg_peaks (cleaned, correct_artifacts=True)
nk.events_plot (info["ECG_R_Peaks"], cleaned)

<Figure ...>

References

Gamboa, H. (2008). Multi-modal behavioral biometrics based on hci and electrophysiology. PhD The-
sisUniversidade.

W. Zong, T. Heldt, G.B. Moody, and R.G. Mark. An open-source algorithm to detect onset of arterial
blood pressure pulses. In Computers in Cardiology, 2003, pages 259-262, 2003.

Hamilton, Open Source ECG Analysis Software Documentation, E.P.Limited, 2002.

Jiapu Pan and Willis J. Tompkins. A Real-Time QRS Detection Algorithm. In: IEEE Transactions on
Biomedical Engineering BME-32.3 (1985), pp. 230-236.

C. Zeelenberg, A single scan algorithm for QRS detection and feature extraction, IEEE Comp. in Cardi-
ology, vol. 6, pp. 37-42, 1979

A. Lourenco, H. Silva, P. Leite, R. Lourenco and A. Fred, “Real Time Electrocardiogram Segmentation
for Finger Based ECG Biometrics”, BIOSIGNALS 2012, pp. 49-54, 2012.

ecg_phase (ecg_cleaned, rpeaks=None, delineate_info=None, sampling_rate=None)
Compute cardiac phase (for both atrial and ventricular).

Finds the cardiac phase, labelled as 1 for systole and O for diastole.

Parameters

* ecg_cleaned (Union/list, np.array, pd.Series]) — The cleaned ECG channel as returned
by ecg_clean().

* rpeaks (list or array or DataFrame or Series or dict) — The samples at which the different
ECG peaks occur. If a dict or a DataFrame is passed, it is assumed that these containers
were obtained with ecg_findpeaks() or ecg_peaks().

* delineate_info (dict) — A dictionary containing additional information of ecg delineation
and can be obtained with ecg_delineate().

« sampling_rate (inf) — The sampling frequency of ecg_signal (in Hz, ie., sam-
ples/second). Defaults to None.

Returns

signals (DataFrame) — A DataFrame of same length as ecg_signal containing the following
columns:

* "ECG_Phase_Atrial”: cardiac phase, marked by “1” for systole and “0” for diastole.

* "ECG_Phase_Completion_Atrial”: cardiac phase (atrial) completion, expressed in per-
centage (from O to 1), representing the stage of the current cardiac phase.

e "ECG_Phase_Ventricular”: cardiac phase, marked by “1” for systole and “0” for dias-
tole.

7.1. ECG

115

NeuroKit2, Release 0.0.39

* "ECG_Phase_Completion_Ventricular”: cardiac phase (ventricular) completion, ex-
pressed in percentage (from O to 1), representing the stage of the current cardiac phase.

See also:

ecg_clean(),ecqg _peaks(),ecqg _process(),ecqg _plot ()

Examples

neurokit2 as nk

ecg nk.ecg_simulate (duration=10, sampling_rate=1000)

cleaned nk.ecg_clean(ecg, sampling rate=1000)

_, rpeaks nk.ecg_peaks (cleaned)

signals, waves nk.ecg_delineate (cleaned, rpeaks, sampling_rate=1000)

cardiac_phase nk.ecg_phase (ecg_cleaned-cleaned, rpeaks-rpeaks,
delineate_info-waves, sampling_rate=1000)
nk.signal_plot ([cleaned, cardiac_phase], standardize=True)

ecg_plot (ecg_signals, rpeaks=None, sampling_rate=None, show_type='default’)
Visualize ECG data.

Parameters
* ecg_signals (DataFrame) — DataFrame obtained from ecg_process().

* rpeaks (dict) — The samples at which the R-peak occur. Dict returned by ecg_process().
Defaults to None.

» sampling_rate (int) — The sampling frequency of the ECG (in Hz, i.e., samples/second).
Needs to be supplied if the data should be plotted over time in seconds. Otherwise the
data is plotted over samples. Defaults to None. Must be specified to plot artifacts.

* show_type (str) — Visualize the ECG data with ‘default’ or visualize artifacts thresholds
with ‘artifacts’ produced by ecg_fixpeaks(), or ‘full’ to visualize both.

Returns fig — Figure representing a plot of the processed ecg signals (and peak artifacts).

Examples

neurokit2 as nk

ecg nk.ecg_simulate (duration=15, sampling_ rate=1000, heart_rate=80)
signals, info nk.ecg_process (ecg, sampling_rate)

nk.ecg_plot (signals, sampling rate=1000, show_type='default')
<Figure ...>

See also:
ecqg_process ()

ecg_process (ecg_signal, sampling_rate=1000, method="neurokit')
Process an ECG signal.

Convenience function that automatically processes an ECG signal.
Parameters

 ecg_signal (Union[list, np.array, pd.Series]) — The raw ECG channel.

116 Chapter 7. Functions

NeuroKit2, Release 0.0.39

» sampling_rate (inf) — The sampling frequency of ecg_signal (in Hz, ie., sam-
ples/second). Defaults to 1000.

* method (str) — The processing pipeline to apply. Defaults to “neurokit”.

Returns

e signals (DataFrame) — A DataFrame of the same length as the ecg_signal containing the
following columns:

"ECG_Raw”: the raw signal.

"ECG_Clean”: the cleaned signal.

"ECG_R_Peaks”: the R-peaks marked as “1” in a list of zeros.
”ECG_Rate”: heart rate interpolated between R-peaks.
"ECG_P_Peaks”: the P-peaks marked as “1” in a list of zeros
"ECG_Q_Peaks”: the Q-peaks marked as “1” in a list of zeros .
"ECG_S_Peaks”: the S-peaks marked as “1” in a list of zeros.
"ECG_T_Peaks”: the T-peaks marked as “1” in a list of zeros.
"ECG_P_Onsets”: the P-onsets marked as “1” in a list of zeros.

”ECG_P_Offsets”: the P-offsets marked as “1” in a list of zeros (only
method in ecg_delineate is wavelet).

YECG_T_Onsets”: the T-onsets marked as “1” in a list of zeros (only
method in ecg_delineate is wavelet).

"ECG_T_Offsets”: the T-offsets marked as “1” in a list of zeros.

YECG_R_Onsets”’: the R-onsets marked as ‘“1” in a list of zeros (only
method in ecg_delineate is wavelet).

”ECG_R_Offsets”: the R-offsets marked as “1” in a list of zeros (only
method in ecg_delineate is wavelet).

when

when

when

when

”ECG_Phase_Atrial”: cardiac phase, marked by “1” for systole and “0” for diastole.

"ECG_Phase_Ventricular”: cardiac phase, marked by “1” for systole and “0” for

diastole.

"ECG_Atrial_PhaseCompletion”: cardiac phase (atrial) completion, expressed in

percentage (from O to 1), representing the stage of the current cardiac phase.

"ECG_Ventricular_PhaseCompletion”: cardiac phase (ventricular) completion, ex-
pressed in percentage (from O to 1), representing the stage of the current cardiac

phase.

* info (dict) — A dictionary containing the samples at which the R-peaks occur, accessible
with the key “ECG_Peaks”.

See also:

ecg_clean(),ecg_findpeaks(),ecg _plot(),signal_rate(),signal_fixpeaks/()

7.1. ECG

117

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

Yele| nk.ecg_simulate (duration=15, sampling_rate=100(heart_rate-80)

signals, info nk.ecg_process (ecg, sampling rate=10
nk.ecg_plot (signals)
<Figure ...>

ecg_quality (ecg_cleaned, rpeaks=None, sampling_rate=1000)
Quality of ECG Signal.

Compute a continuous index of quality of the ECG signal, by interpolating the distance of each QRS segment
from the average QRS segment present in the data. This index is therefore relative, and 1 corresponds to
heartbeats that are the closest to the average sample and O corresponds to the most distance heartbeat, from that
average sample.

Returns array — Vector containing the quality index ranging from O to 1.
See also:

ecg_segment (), ecqg_delineate ()

Examples

neurokit2 as nk

ecg nk.ecg_simulate (duration=30, sampling_ rate=300, noise=0.2)
ecg_cleaned nk.ecg_clean(ecg, sampling_rate=300)
quality nk.ecg_quality (ecg_cleaned, sampling_rate=300)

nk.signal_plot ([ecg_cleaned, quality], standardize-True)

ecg_rate (peaks, sampling_rate=1000, desired_length=None, interpolation_method="monotone_cubic')
Calculate signal rate from a series of peaks.

This function can also be called either via ecg_rate (), "ppg_rate () or rsp_rate () (aliases provided
for consistency).

Parameters

* peaks (Union[list, np.array, pd.DataFrame, pd.Series, dict]) — The samples at which
the peaks occur. If an array is passed in, it is assumed that it was obtained with sig-
nal_findpeaks(). If a DataFrame is passed in, it is assumed it is of the same length as the
input signal in which occurrences of R-peaks are marked as “1”, with such containers
obtained with e.g., ecg_findpeaks() or rsp_findpeaks().

« sampling_rate (inf) — The sampling frequency of the signal that contains peaks (in Hz,
i.e., samples/second). Defaults to 1000.

¢ desired_length (int) — If left at the default None, the returned rated will have the same
number of elements as peaks. If set to a value larger than the sample at which the last
peak occurs in the signal (i.e., peaks[-1]), the returned rate will be interpolated between
peaks over desired_length samples. To interpolate the rate over the entire duration of the
signal, set desired_length to the number of samples in the signal. Cannot be smaller than
or equal to the sample at which the last peak occurs in the signal. Defaults to None.

* interpolation_method (str) — Method used to interpolate the rate between peaks. See
signal_interpolate(). ‘monotone_cubic’ is chosen as the default interpolation method

118 Chapter 7. Functions

NeuroKit2, Release 0.0.39

since it ensures monotone interpolation between data points (i.e., it prevents physiolog-
ically implausible “overshoots” or “undershoots” in the y-direction). In contrast, the
widely used cubic spline interpolation does not ensure monotonicity.

Returns array — A vector containing the rate.
See also:

signal_findpeaks (), signal_fixpeaks (), signal_plot ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10, sampling_rate=1000, frequency=1)
info nk.signal_findpeaks (signal)

rate nk.signal_rate (peaks=info["Peaks"], desired_length=len(signal))

fig nk.signal_plot (rate)
fig

ecg_rsa (ecg_signals, rsp_signals=None, rpeaks=None, sampling_rate=1000, continuous="False)
Respiratory Sinus Arrhythmia (RSA)

Respiratory sinus arrhythmia (RSA), also referred to as ‘cardiac coherence’, is the naturally occurring variation
in heart rate during the breathing cycle. Metrics to quantify it are often used as a measure of parasympathetic
nervous system activity. Neurophysiology informs us that the functional output of the myelinated vagus origi-
nating from the nucleus ambiguus has a respiratory rhythm. Thus, there would a temporal relation between the
respiratory rthythm being expressed in the firing of these efferent pathways and the functional effect on the heart
rate rhythm manifested as RSA. Importantly, several methods exist to quantify RSA:

* The Peak-to-trough (P2T) algorithm measures the statistical range in milliseconds of the heart

period oscillation associated with synchronous respiration. Operationally, subtracting the shortest heart period
during inspiration from the longest heart period during a breath cycle produces an estimate of RSA during
each breath. The peak-to-trough method makes no statistical assumption or correction (e.g., adaptive filtering)
regarding other sources of variance in the heart period time series that may confound, distort, or interact with the
metric such as slower periodicities and baseline trend. Although it has been proposed that the P2T method “acts
as a time-domain filter dynamically centered at the exact ongoing respiratory frequency” (Grossman, 1992), the
method does not transform the time series in any way, as a filtering process would. Instead the method uses
knowledge of the ongoing respiratory cycle to associate segments of the heart period time series with either
inhalation or exhalation (Lewis, 2012).

* The Porges-Bohrer (PB) algorithm assumes that heart period time series reflect the sum of several

component time series. Each of these component time series may be mediated by different neural mechanisms
and may have different statistical features. The Porges-Bohrer method applies an algorithm that selectively
extracts RSA, even when the periodic process representing RSA is superimposed on a complex baseline that
may include aperiodic and slow periodic processes. Since the method is designed to remove sources of variance
in the heart period time series other than the variance within the frequency band of spontaneous breathing, the
method is capable of accurately quantifying RSA when the signal to noise ratio is low.

Parameters

e ecg_signals (DataFrame) — DataFrame obtained from ecg_process(). Should contain
columns ECG_Rate and ECG_R_Peaks. Can also take a DataFrame comprising of both
ECG and RSP signals, generated by bio_process().

7.1. ECG 119

NeuroKit2, Release 0.0.39

e rsp_signals (DataFrame) — DataFrame obtained from rsp_process(). Should contain
columns RSP_Phase and RSP_PhaseCompletion. No impact when a DataFrame com-
prising of both the ECG and RSP signals are passed as ecg_signals. Defaults to None.

* rpeaks (dict) — The samples at which the R-peaks of the ECG signal occur. Dict returned
by ecg_peaks(), ecg_process(), or bio_process(). Defaults to None.

« sampling_rate (inf) — The sampling frequency of signals (in Hz, i.e., samples/second).

* continuous (bool) — If False, will return RSA properties computed from the data (one
value per index). If True, will return continuous estimations of RSA of the same length
as the signal. See below for more details.

Returns
rsa (dict) — A dictionary containing the RSA features, which includes:

* "RSA_P2T Values”: the estimate of RSA during each breath cycle, produced by subtract-
ing the shortest heart period (or RR interval) from the longest heart period in ms.

* "RSA_P2T_Mean’: the mean peak-to-trough across all cycles in ms
* "RSA_P2T_Mean_log”: the logarithm of the mean of RSA estimates.
e "RSA_P2T_SD”: the standard deviation of all RSA estimates.

* "RSA_P2T_NoRSA”: the number of breath cycles from which RSA could not be calcu-
lated.

* "RSA_PorgesBohrer”: the Porges-Bohrer estimate of RSA, optimal when the signal to

noise ratio is low, in In(ms”2).

Example

neurokit2 as nk

nk.data ("bio_eventrelated_100hz")

ecg_signals, info nk.ecg_process (data["ECG"], sampling_rate=100)
rsp_signals, _ nk.rsp_process (data["RSP"], sampling_rate=100)

nk.ecg_rsa(ecg_signals, rsp_signals, info, sampling_rate=100,

continuous-False)

rsa nk.ecg_rsa(ecg_signals, rsp_signals, info, sampling_rate=100,
continuous=True)

(continues on next page)

120 Chapter 7. Functions

NeuroKit2, Release 0.0.39

(continued from previous page)

[15000 rows x 1 columns] >>> nk.signal_plot([ecg_signals[“ECG_Rate”], rsp_signals[“RSP_Rate”], rsa], stan-
dardize=True)

References
 Servant, D., Logier, R., Mouster, Y., & Goudemand, M. (2009). La variabilité de la fréquence cardiaque.
Intéréts en psychiatrie. L’Encéphale, 35(5), 423—428. doi:10.1016/j.encep.2008.06.016

e Lewis, G. F, Furman, S. A., McCool, M. F,, & Porges, S. W. (2012). Statistical strategies to quantify
respiratory sinus arrhythmia: Are commonly used metrics equivalent?. Biological psychology, 89(2),
349-364.

e Zohar, A. H., Cloninger, C. R., & McCraty, R. (2013). Personality and heart rate variability: exploring
pathways from personality to cardiac coherence and health. Open Journal of Social Sciences, 1(06), 32.
ecg_rsp (ecg_rate, sampling_rate=1000, method="vangent2019")
Extract ECG Derived Respiration (EDR).

This implementation is far from being complete, as the information in the related papers prevents me from
getting a full understanding of the procedure. Help is required!

Parameters
* ecg_rate (array) — The heart rate signal as obtained via ecg_rate().

» sampling_rate (inf) — The sampling frequency of the signal that contains the R-peaks (in
Hz, i.e., samples/second). Defaults to 1000Hz.

* method (str) — Can be one of ‘vangent2019’ (default), ‘soni2019°, ‘charlton2016’ or
‘sarkar2015’.

Returns array — A Numpy array containing the heart rate.

Examples

neurokit2 as nk
pandas as pd

data nk.data ("bio_eventrelated_100hz")

rpeaks, info nk.ecg_peaks (data["ECG"], sampling_rate=100)

ecg_rate nk.signal_rate (rpeaks, sampling_rate=100, desired_
length=1len (rpeaks))

edr nk.ecg_rsp(ecg_rate, sampling_rate=100)
nk.standardize (pd.DataFrame ({"EDR" "RSP": data["RSP"]})) .plot ()

tplotlib.ax subplots.Ax

nk.standardize (pd.DataFrame ({"True RSP": data["RSP"],
"vangent2019": nk.ecg_rsp(ecg_rate, sampling_

(continues on next page

7.1. ECG 121

NeuroKit2, Release 0.0.39

(continued from previous page)

"sarkar2015": nk.ecg_rsp(ecg_rate, sampling_
rate=100, method-"sarkar2015"),

"charlton2016": nk.ecg_rsp(ecg_rate, sampling_
rate-100, method "charlton2016"),

"soni2019": nk.ecg_rsp(ecg_rate, sampling_
rate-100,

method="soni2019") }))

plot ()

<matplotlib.ax subplc

References
 van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). HeartPy: A novel heart rate algorithm for the
analysis of noisy signals. Transportation research part F: traffic psychology and behaviour, 66, 368-378.

 Sarkar, S., Bhattacherjee, S., & Pal, S. (2015). Extraction of respiration signal from ECG for respiratory
rate estimation.

¢ Charlton, P. H., Bonnici, T., Tarassenko, L., Clifton, D. A., Beale, R., & Watkinson, P. J. (2016). An as-
sessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram.
Physiological measurement, 37(4), 610.

* Soni, R., & Muniyandi, M. (2019). Breath rate variability: a novel measure to study the meditation effects.
International Journal of Yoga, 12(1), 45.
ecg_segment (ecg_cleaned, rpeaks=None, sampling_rate=1000, show=False)
Segment an ECG signal into single heartbeats.
Parameters

* ecg_cleaned (Union/list, np.array, pd.Series]) — The cleaned ECG channel as returned
by ecg_clean().

* rpeaks (dict) — The samples at which the R-peaks occur. Dict returned by ecg_peaks().
Defaults to None.

» sampling_rate (inf) — The sampling frequency of ecg_signal (in Hz, ie., sam-
ples/second). Defaults to 1000.

* show (bool) — If True, will return a plot of heartbeats. Defaults to False.
Returns dict — A dict containing DataFrames for all segmented heartbeats.
See also:

ecg_clean(),ecg_plot ()

Examples

neurokit2 as nk

ecg nk.ecg_simulate (duration=15, sampling_rate=1000, heart_rate=80)

ecg_cleaned nk.ecg_clean (ecg, sampling_rate=1000)
nk.ecg_segment (ecg_cleaned, rpeaks=None, sampling_rate=1000, show=True)
Signal Index Label

nal Index

(continues on next page

122 Chapter 7. Functions

NeuroKit2, Release 0.0.39

(continued from previous page)

Signal Index Label

ecg_simulate (duration=10, length=None, sampling_rate=1000, noise=0.01, heart_rate=70,

method="ecgsyn', random_state=None)
Simulate an ECG/EKG signal.

Generate an artificial (synthetic) ECG signal of a given duration and sampling rate using either the ECGSYN
dynamical model (McSharry et al., 2003) or a simpler model based on Daubechies wavelets to roughly approx-
imate cardiac cycles.

Parameters

duration (int) — Desired recording length in seconds.

sampling_rate (int) — The desired sampling rate (in Hz, i.e., samples/second).

length (int) — The desired length of the signal (in samples).

noise (float) — Noise level (amplitude of the laplace noise).

heart_rate (int) — Desired simulated heart rate (in beats per minute).

method (s7r) — The model used to generate the signal. Can be ‘simple’ for a simula-
tion based on Daubechies wavelets that roughly approximates a single cardiac cycle. If
‘ecgsyn’ (default), will use an advanced model desbribed McSharry et al. (2003).

random_state (inf) — Seed for the random number generator.

Returns array — Vector containing the ECG signal.

Examples

pandas as pd
neurokit2 as nk

ecgl nk.ecg_simulate (duration=10, method="simple")
ecg2 nk.ecg_simulate (duration=10, method="ecgsyn")

pd.DataFrame ({"ECG_Simple": ecgl,
ecg2}) .plot (subplots=True)
U]"“ ~1 A ~ T

See also:

rsp_simulate (), eda_simulate (), ppg_simulate (), emg_simulate ()

7.1. ECG 123

https://physionet.org/content/ecgsyn/

NeuroKit2, Release 0.0.39

References
* McSharry, P. E., Clifford, G. D., Tarassenko, L., & Smith, L. A. (2003). A dynamical model for

generating synthetic electrocardiogram signals. IEEE transactions on biomedical engineering, 50(3), 289-294.
- https://github.com/diarmaidocualain/ecg_simulation

7.2 PPG

Submodule for NeuroKit.

Ppg_clean (ppg_signal, sampling_rate=1000, method="elgendi")
Clean a photoplethysmogram (PPG) signal.

Prepare a raw PPG signal for systolic peak detection.
Parameters
o ppg_signal (Union[list, np.array, pd.Series]) — The raw PPG channel.

» sampling_rate (int) — The sampling frequency of the PPG (in Hz, i.e., samples/second).
The default is 1000.

* method (str) — The processing pipeline to apply. Can be one of “elgendi”. The default is
“elgendi”.

Returns clean (array) — A vector containing the cleaned PPG.
See also:

ppo_simulate (), ppg_findpeaks ()

Examples

neurokit2 as nk
matplotlib.pyplot as plt

jejele] nk.ppg_simulate (heart_rate=75, duration=30)

ppg_clean nk.ppg_clean (ppg)

plt.plot (ppg, label="raw PPG")
plt.plot (ppg_clean, label="clean PPG")
plt.legend()

ppg_£findpeaks (ppg_cleaned, sampling_rate=1000, method="elgendi', show=False)
Find systolic peaks in a photoplethysmogram (PPG) signal.

Parameters

* ppg_cleaned (Union/list, np.array, pd.Series]) — The cleaned PPG channel as returned
by ppg_clean().

» sampling_rate (int) — The sampling frequency of the PPG (in Hz, i.e., samples/second).
The default is 1000.

* method (str) — The processing pipeline to apply. Can be one of “elgendi”. The default is
“elgendi”.

124 Chapter 7. Functions

https://github.com/diarmaidocualain/ecg_simulation

NeuroKit2, Release 0.0.39

* show (bool) — If True, returns a plot of the thresholds used during peak detection. Useful
for debugging. The default is False.

Returns info (dict) — A dictionary containing additional information, in this case the samples at
which systolic peaks occur, accessible with the key “PPG_Peaks”.

See also:

ppg._simulate (), ppg_clean ()

Examples

neurokit2 as nk
matplotlib.pyplot as plt

jejele] nk.ppg_simulate (heart_rate=75, duration=30)

ppg_clean nk.ppg_clean (ppg)
info nk . ppg_findpeaks (ppg_clean)

peaks info ["PPG_Peaks"]

plt.plot (ppg, label="raw PPG")

plt.plot (ppg_clean, label="clean PPG")

plt.scatter (peaks, ppglpeaks], c="r", label-"systolic peaks")
plt.legend()

References
 Elgendi M, Norton I, Brearley M, Abbott D, Schuurmans D (2013) Systolic Peak Detection in
Acceleration Photoplethysmograms Measured from Emergency Responders in Tropical Conditions. PLoS ONE

8(10): €76585. doi:10.1371/journal.pone.0076585.

PPg_plot (ppg_signals, sampling_rate=None)
Visualize photoplethysmogram (PPG) data.

Parameters
* ppg_signals (DataFrame) — DataFrame obtained from ppg_process().

» sampling_rate (int) — The sampling frequency of the PPG (in Hz, i.e., samples/second).
Needs to be supplied if the data should be plotted over time in seconds. Otherwise the
data is plotted over samples. Defaults to None.

Returns fig — Figure representing a plot of the processed PPG signals.

Examples

neurokit2 as nk

jejele] nk.ppg_simulate (duration=10, sampling_rate=1000, heart_rate=70)

signals, info nk.ppg_process (ppg, sampling_rate=1000)

(continues on next page

7.2. PPG 125

NeuroKit2, Release 0.0.39

(continued from previous page)

nk.ppg_plot (signals)

<Figure

See also:

ppg_process ()

pPPg_process (ppg_signal, sampling_rate=1000, **kwargs)
Process a photoplethysmogram (PPG) signal.

Convenience function that automatically processes an electromyography signal.
Parameters
o ppg_signal (Union[list, np.array, pd.Series]) — The raw PPG channel.

» sampling_rate (inf) — The sampling frequency of emg_signal (in Hz, i.e., sam-
ples/second).

Returns

e signals (DataFrame) — A DataFrame of same length as emg_signal containing the fol-
lowing columns: - “PPG_Raw”: the raw signal. - “PPG_Clean”: the cleaned signal. -
“PPG_Rate”: the heart rate as measured based on PPG peaks. - “PPG_Peaks”: the PPG
peaks marked as “1” in a list of zeros.

* info (dict) — A dictionary containing the information of peaks.
See also:

ppg_clean (), ppg_findpeaks ()

Examples

neurokit2 as nk

jejole] nk.ppg_simulate (duration=10, sampling_rate=100(heart_rate=70)

signals, info nk.ppg_process (ppg, sampling_rate-]
fig nk.ppg_plot (signals)
fig

pPPg_rate (peaks, sampling_rate=1000, desired_length=None, interpolation_method="monotone_cubic")
Calculate signal rate from a series of peaks.

This function can also be called either via ecg_rate (), "ppg_rate () or rsp_rate () (aliases provided
for consistency).

Parameters

» peaks (Union[list, np.array, pd.DataFrame, pd.Series, dict]) — The samples at which
the peaks occur. If an array is passed in, it is assumed that it was obtained with sig-
nal_findpeaks(). If a DataFrame is passed in, it is assumed it is of the same length as the
input signal in which occurrences of R-peaks are marked as “1”, with such containers
obtained with e.g., ecg_findpeaks() or rsp_findpeaks().

» sampling_rate (inf) — The sampling frequency of the signal that contains peaks (in Hz,
i.e., samples/second). Defaults to 1000.

* desired_length (int) — If left at the default None, the returned rated will have the same
number of elements as peaks. If set to a value larger than the sample at which the last

126 Chapter 7. Functions

NeuroKit2, Release 0.0.39

peak occurs in the signal (i.e., peaks[-1]), the returned rate will be interpolated between
peaks over desired_length samples. To interpolate the rate over the entire duration of the
signal, set desired_length to the number of samples in the signal. Cannot be smaller than
or equal to the sample at which the last peak occurs in the signal. Defaults to None.

* interpolation_method (str) — Method used to interpolate the rate between peaks. See
signal_interpolate(). ‘monotone_cubic’ is chosen as the default interpolation method
since it ensures monotone interpolation between data points (i.e., it prevents physiolog-
ically implausible “overshoots” or “undershoots” in the y-direction). In contrast, the
widely used cubic spline interpolation does not ensure monotonicity.

Returns array — A vector containing the rate.
See also:

signal_findpeaks (), signal_fixpeaks (), signal_plot ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10, sampling_rate=1000, frequency-1)
info nk.signal_findpeaks (signal)

rate nk.signal_rate (peaks=info["Peaks"], desired_length-=len(signal))
fig nk.signal_plot (rate)
fig

Ppg_simulate (duration=120, sampling_rate=1000, heart_rate=70, frequency_modulation=0.3,
ibi_randomness=0.1, drift=0, motion_amplitude=0.1, powerline_amplitude=0.01,

burst_number=0, burst_amplitude=1, random_state=None, show="False)
Simulate a photoplethysmogram (PPG) signal.

Phenomenological approximation of PPG. The PPG wave is described with four landmarks: wave onset, location
of the systolic peak, location of the dicrotic notch and location of the diastolic peaks. These landmarks are
defined as x and y coordinates (in a time series). These coordinates are then interpolated at the desired sampling
rate to obtain the PPG signal.

Parameters
* duration (inf) — Desired recording length in seconds. The default is 120.

» sampling_rate (inf) — The desired sampling rate (in Hz, i.e., samples/second). The de-
fault is 1000.

* heart_rate (int) — Desired simulated heart rate (in beats per minute). The default is 70.

* frequency_modulation (float) — Float between 0 and 1. Determines how pronounced
respiratory sinus arrythmia (RSA) is (0 corresponds to absence of RSA). The default is
0.3.

¢ ibi_randomness (float) — Float between 0 and 1. Determines how much random noise
there is in the duration of each PPG wave (0 corresponds to absence of variation). The
default is 0.1.

e drift (floar) — Float between 0 and 1. Determines how pronounced the baseline drift (.05
Hz) is (0 corresponds to absence of baseline drift). The default is 1.

7.2. PPG 127

NeuroKit2, Release 0.0.39

motion_amplitude (floar) — Float between 0 and 1. Determines how pronounced the
motion artifact (0.5 Hz) is (0 corresponds to absence of motion artifact). The default is
0.1.

powerline_amplitude (float) — Float between 0 and 1. Determines how pronounced the
powerline artifact (50 Hz) is (0 corresponds to absence of powerline artifact). Note that
powerline_amplitude > 0 is only possible if ‘sampling_rate’ is >= 500. The default is 0.1.

burst_amplitude (floar) — Float between 0 and 1. Determines how pronounced high
frequency burst artifacts are (0 corresponds to absence of bursts). The default is 1.

burst_number (int) — Determines how many high frequency burst artifacts occur. The
default is O.

show (bool) — If true, returns a plot of the landmarks and interpolated PPG. Useful for
debugging.

random_state (inr) — Seed for the random number generator. Keep it fixed for repro-
ducible results.

Returns ppg (array) — A vector containing the PPG.
See also:

ecg_simulate (), rsp_simulate(),eda_simulate(),emg_simulate ()

Examples

neurokit2 as nk

PPg nk.ppg_simulate (duration=40, sampling_rate=500, heart_rate=75, random_
state=42)

7.3 HRV

hrv (peaks, sampling_rate=1000, show=False)
Computes indices of Heart Rate Variability (HRV).

Computes HRV indices in the time-, frequency-, and nonlinear domain. Note that a minimum duration of the
signal containing the peaks is recommended for some HRV indices to be meaninful. For instance, 1, 2 and 5
minutes of high quality signal are the recomended minima for HF, LF and LF/HF, respectively. See references
for details.

Parameters

 peaks (dict) — Samples at which cardiac extrema (i.e., R-peaks, systolic peaks) occur.
Dictionary returned by ecg_findpeaks, ecg_peaks, ppg_findpeaks, or ppg_peaks.

» sampling_rate (int, optional) — Sampling rate (Hz) of the continuous cardiac signal in
which the peaks occur. Should be at least twice as high as the highest frequency in vhf.
By default 1000.

* show (bool, optional) — If True, returns the plots that are generates for each of the do-

mains.
Returns DataFrame — Contains HRV metrics from three domains: - frequency
(see hrv_frequency) - time (see hrv_time) - non-linear (see “hrv_nonlinear

<https://meurokit2.readthedocs.io/en/latest/functions.html#neurokit2.hrv.hrv_nonlinear®_)

128 Chapter 7. Functions

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.hrv.hrv_frequency
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.hrv.hrv_time

NeuroKit2, Release 0.0.39

See also:

ecg_peaks (), ppg_peaks (), hrv_time (), hrv_frequency (), hrv_nonlinear ()

Examples

neurokit2 as nk

nk.data ("bio_resting_5min_100hz")

peaks, info nk.ecg_peaks (data["ECG"], sampling_rate-100)

hrv_indices nk.hrv (peaks, sampling rate=100, show=True)
hrv_indices

References
* Stein, P. K. (2002). Assessing heart rate variability from real-world Holter reports. Cardiac

electrophysiology review, 6(3), 239-244.
 Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms.
Frontiers in public health, 5, 258.

hrv_frequency (peaks, sampling_rate=1000, ulf=0, 0.0033, vlf=0.0033, 0.04, [f=0.04, 0.15, hf=0.15, 0.4,

vhf=0.4, 0.5, psd_method="welch', show=False, silent=True, **kwargs)
Computes frequency-domain indices of Heart Rate Variability (HRV).

Note that a minimum duration of the signal containing the peaks is recommended for some HRV indices to be
meaningful. For instance, 1, 2 and 5 minutes of high quality signal are the recomended minima for HF, LF and
LF/HF, respectively. See references for details.

Parameters

 peaks (dict) — Samples at which cardiac extrema (i.e., R-peaks, systolic peaks) occur.
Dictionary returned by ecg_findpeaks, ecg_peaks, ppg_findpeaks, or ppg_peaks.

» sampling_rate (int, optional) — Sampling rate (Hz) of the continuous cardiac signal in
which the peaks occur. Should be at least twice as high as the highest frequency in vhf.
By default 1000.

o ulf (tuple, optional) — Upper and lower limit of the ultra-low frequency band. By default
(0, 0.0033).

* VIf (tuple, optional) — Upper and lower limit of the very-low frequency band. By default
(0.0033, 0.04).

* If (tuple, optional) — Upper and lower limit of the low frequency band. By default (0.04,
0.15).

 hf (tuple, optional) — Upper and lower limit of the high frequency band. By default (0.15,
0.4).

 vhf (tuple, optional) — Upper and lower limit of the very-high frequency band. By default
(0.4, 0.5).

7.3. HRV 129

NeuroKit2, Release 0.0.39

psd_method (str) — Method used for spectral density estimation. For details see sig-
nal.signal_power. By default “welch”.

silent (bool) — If False, warnings will be printed. Default to True.
 show (bool) — If True, will plot the power in the different frequency bands.
o *¥kwargs (optional) — Other arguments.

Returns DataFrame — Contains frequency domain HRV metrics: - ULF: The spectral power den-
sity pertaining to ultra low frequency band i.e., .0 to .0033 Hz by default. - VLF: The spectral
power density pertaining to very low frequency band i.e., .0033 to .04 Hz by default. - LF:
The spectral power density pertaining to low frequency band i.e., .04 to .15 Hz by default. -
HEF: The spectral power density pertaining to high frequency band i.e., .15 to .4 Hz by default.
- VHF: The variability, or signal power, in very high frequency i.e., .4 to .5 Hz by default. -
LFn: The normalized low frequency, obtained by dividing the low frequency power by the
total power. - HFn: The normalized high frequency, obtained by dividing the low frequency
power by the total power. - LnHF: The log transformed HF.

See also:

ecg_peaks (), ppg_peaks (), hrv_summary (), hrv_time (), hrv_nonlinear ()

Examples

neurokit2 as nk

data nk.data ("bio_resting_5min_100hz")

peaks, info nk.ecg_peaks (data["ECG"], sampling_rate-=100)

hrv nk.hrv_frequency (peaks, sampling rate=100, show=True)

References
* Stein, P. K. (2002). Assessing heart rate variability from real-world Holter reports. Cardiac

electrophysiology review, 6(3), 239-244.
 Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms.
Frontiers in public health, 5, 258.

hrv_nonlinear (peaks, sampling_rate=1000, show=False)
Computes nonlinear indices of Heart Rate Variability (HRV).

See references for details.

Parameters

 peaks (dict) — Samples at which cardiac extrema (i.e., R-peaks, systolic peaks) occur.
Dictionary returned by ecg_findpeaks, ecg_peaks, ppg_findpeaks, or ppg_peaks.

» sampling_rate (int, optional) — Sampling rate (Hz) of the continuous cardiac signal in
which the peaks occur. Should be at least twice as high as the highest frequency in vhf.
By default 1000.

130 Chapter 7. Functions

NeuroKit2, Release 0.0.39

» show (bool, optional) — If True, will return a Poincaré plot, a scattergram, which plots
each RR interval against the next successive one. The ellipse centers around the average
RR interval. By default False.

Returns
DataFrame — Contains non-linear HRV metrics:
* Characteristics of the Poincaré Plot Geometry:
— SD1: SD1 is a measure of the spread of RR intervals on the Poincaré plot

perpendicular to the line of identity. It is an index of short-term RR interval
fluctuations, i.e., beat-to-beat variability. It is equivalent (although on another
scale) to RMSSD, and therefore it is redundant to report correlations with both
(Ciccone, 2017).

— SD2: SD2 is a measure of the spread of RR intervals on the Poincaré plot
along the

line of identity. It is an index of long-term RR interval fluctuations.

— SD1SD2: the ratio between short and long term fluctuations of the RR inter-
vals

(SD1 divided by SD2).
— S: Area of ellipse described by SD1 and SD2 (pi * SD1 * SD2).Itis
proportional to SDI1SD?2.

— CSI: The Cardiac Sympathetic Index (Toichi, 1997), calculated by dividing
the

longitudinal variability of the Poincaré plot (4« SD2) by its transverse variability
(4%sSD1).

— CVI: The Cardiac Vagal Index (Toichi, 1997), equal to the logarithm of the
product of

longitudinal (4 * SD2) and transverse variability (4 «+SD1).

— CSI_Modified: The modified CSI (Jeppesen, 2014) obtained by dividing the
square of

the longitudinal variability by its transverse variability.

¢ Indices of Heart Rate Asymmetry (HRA), i.e., asymmetry of the Poincaré plot (Yan,
2017):

— GI: Guzik’s Index, defined as the distance of points above line of identity (LI)

to LI divided by the distance of all points in Poincaré plot to LI except those that
are located on LI

— SI: Slope Index, defined as the phase angle of points above LI divided by the
phase angle of all points in Poincaré plot except those that are located on LI.
— AI: Area Index, defined as the cumulative area of the sectors corresponding to

the points that are located above LI divided by the cumulative area of sectors
corresponding to all points in the Poincaré plot except those that are located on
LL

7.3. HRV 131

NeuroKit2, Release 0.0.39

— PI: Porta’s Index, defined as the number of points below LI divided by the
total

number of points in Poincaré plot except those that are located on LI
— SD1d and SD1a: short-term variance of contributions of decelerations

(prolongations of RR intervals) and accelerations (shortenings of RR intervals),
respectively (Piskorski, 2011).

— C1d and Cla: the contributions of heart rate decelerations and accelerations
to short-term HRYV, respectively (Piskorski, 2011).
— SD2d and SD2a: long-term variance of contributions of decelerations

(prolongations of RR intervals) and accelerations (shortenings of RR intervals),
respectively (Piskorski, 2011).

— C2d and C2a: the contributions of heart rate decelerations and accelerations
to long-term HRYV, respectively (Piskorski, 2011).
— SDNNd and SDNNa: total variance of contributions of decelerations

(prolongations of RR intervals) and accelerations (shortenings of RR intervals),
respectively (Piskorski, 2011).

— Cd and Ca: the total contributions of heart rate decelerations and
accelerations to HRV.
 Indices of Heart Rate Fragmentation (Costa, 2017):
— PIP: Percentage of inflection points of the RR intervals series.
— TALS: Inverse of the average length of the acceleration/deceleration segments.
— PSS: Percentage of short segments.
— PAS: IPercentage of NN intervals in alternation segments.
¢ Indices of Complexity:

— ApEn: The approximate entropy measure of HRV, calculated by en-
tropy_approximate().

— SampEn: The sample entropy measure of HRYV, calculated by entropy_sample().

See also:

ecg_peaks (), ppg_peaks (), hrv_frequency (), hrv_time (), hrv_summary ()

Examples

neurokit2 as nk

data nk.data ("bio_resting_5min_100hz")

peaks, info nk.ecg_peaks (data["ECG"], sampling_rate-1

continues on next page

132 Chapter 7. Functions

NeuroKit2, Release 0.0.39

(continued from previous page)

hrv nk.hrv_nonlinear (peaks, sampling_rate=100, show-True)

hrv

References
* Yan, C., Li, P, Ji, L., Yao, L., Karmakar, C., & Liu, C. (2017). Area asymmetry of heart

rate variability signal. Biomedical engineering online, 16(1), 112.
e Ciccone, A. B, Siedlik, J. A., Wecht, J. M., Deckert, J. A., Nguyen, N. D., & Weir, J. P.

(2017). Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle & nerve, 56(4), 674-
678.

 Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms.
Frontiers in public health, 5, 258.

* Costa, M. D., Davis, R. B., & Goldberger, A. L. (2017). Heart rate fragmentation: a new
approach to the analysis of cardiac interbeat interval dynamics. Front. Physiol. 8, 255 (2017).

* Jeppesen, J., Beniczky, S., Johansen, P., Sidenius, P., & Fuglsang-Frederiksen, A. (2014).

Using Lorenz plot and Cardiac Sympathetic Index of heart rate variability for detecting seizures for patients
with epilepsy. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (pp. 4563-4566). IEEE.

* Piskorski, J., & Guzik, P. (2011). Asymmetric properties of long-term and total heart rate
variability. Medical & biological engineering & computing, 49(11), 1289-1297.

* Stein, P. K. (2002). Assessing heart rate variability from real-world Holter reports. Cardiac
electrophysiology review, 6(3), 239-244.

* Brennan, M. et al. (2001). Do Existing Measures of Poincaré Plot Geometry Reflect Nonlinear
Features of Heart Rate Variability?. IEEE Transactions on Biomedical Engineering, 48(11), 1342-1347.

* Toichi, M., Sugiura, T., Murai, T., & Sengoku, A. (1997). A new method of assessing cardiac

autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval. Jour-
nal of the autonomic nervous system, 62(1-2), 79-84.

hrv_time (peaks, sampling_rate=1000, show=False)
Computes time-domain indices of Heart Rate Variability (HRV).

See references for details.

Parameters

* peaks (dict) — Samples at which cardiac extrema (i.e., R-peaks, systolic peaks) occur.
Dictionary returned by ecg_findpeaks, ecg_peaks, ppg_findpeaks, or ppg_peaks.

» sampling_rate (int, optional) — Sampling rate (Hz) of the continuous cardiac signal in
which the peaks occur. Should be at least twice as high as the highest frequency in vhf.
By default 1000.

 show (bool) — If True, will plot the distribution of R-R intervals.

7.3. HRV 133

NeuroKit2, Release 0.0.39

Returns DataFrame — Contains time domain HRV metrics: - RMSSD: The square root of the
mean of the sum of successive differences between adjacent RR intervals. It is equivalent (al-
though on another scale) to SD1, and therefore it is redundant to report correlations with both
(Ciccone, 2017). - MeanNN: The mean of the RR intervals. - SDNN: The standard deviation
of the RR intervals. - SDSD: The standard deviation of the successive differences between
RR intervals. - CVNN: The standard deviation of the RR intervals (SDNN) divided by the
mean of the RR intervals (MeanNN). - CVSD: The root mean square of the sum of successive
differences (RMSSD) divided by the mean of the RR intervals (MeanNN). - MedianNN: The
median of the absolute values of the successive differences between RR intervals. - MadNN:
The median absolute deviation of the RR intervals. - HCVNN: The median absolute devia-
tion of the RR intervals (MadNN) divided by the median of the absolute differences of their
successive differences (MedianNN). - IQRNN: The interquartile range (IQR) of the RR in-
tervals. - pNN50: The proportion of RR intervals greater than 50ms, out of the total number
of RR intervals. - pNN20: The proportion of RR intervals greater than 20ms, out of the total
number of RR intervals. - TINN: A geometrical parameter of the HRV, or more specifically,
the baseline width of the RR intervals distribution obtained by triangular interpolation, where
the error of least squares determines the triangle. It is an approximation of the RR interval
distribution. - HTI: The HRV triangular index, measuring the total number of RR intervals
divded by the height of the RR intervals histogram.

See also:

ecg_peaks (), ppg_peaks (), hrv_frequency (),hrv_summary (), hrv_nonlinear ()

Examples

neurokit2 as nk

nk.data ("bio_resting_5min_100hz")

peaks, info nk.ecg_peaks (data["ECG"], sampling_rate=100)

hrv nk.hrv_time (peaks, sampling_rate=100, show=True)

References

* Ciccone, A. B, Siedlik, J. A., Wecht, J. M., Deckert, J. A., Nguyen, N. D., & Weir, J. P.
(2017). Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle & nerve, 56(4), 674-
678.

* Stein, P. K. (2002). Assessing heart rate variability from real-world Holter reports. Cardiac
electrophysiology review, 6(3), 239-244.

 Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms.

Frontiers in public health, 5, 258.

134 Chapter 7. Functions

NeuroKit2, Release 0.0.39

7.4 RSP

Submodule for NeuroKit.

rsp_amplitude (rsp_cleaned, peaks, troughs=None, interpolation_method="monotone_cubic")
Compute respiratory amplitude.

Compute respiratory amplitude given the raw respiration signal and its extrema.
Parameters

* rsp_cleaned (Union/list, np.array, pd.Series]) — The cleaned respiration channel as re-
turned by rsp_clean().

* peaks (list or array or DataFrame or Series or dict) — The samples at which the inhalation
peaks occur. If a dict or a DataFrame is passed, it is assumed that these containers were
obtained with rsp_findpeaks().

* troughs (list or array or DataFrame or Series or dict) — The samples at which the inhala-
tion troughs occur. If a dict or a DataFrame is passed, it is assumed that these containers
were obtained with rsp_findpeaks().

* interpolation_method (str) — Method used to interpolate the amplitude between peaks.
See signal_interpolate(). ‘monotone_cubic’ is chosen as the default interpolation method
since it ensures monotone interpolation between data points (i.e., it prevents physiolog-
ically implausible “overshoots” or “undershoots” in the y-direction). In contrast, the
widely used cubic spline interpolation does not ensure monotonicity.

Returns array — A vector containing the respiratory amplitude.
See also:

rsp_clean (), rsp_peaks(),signal_rate (), rsp_process (), rsp_plot ()

Examples

neurokit2 as nk
pandas as pd

rsp nk.rsp_simulate (duration=90, respiratory_rate-=15)
cleaned nk.rsp_clean(rsp, sampling_rate=1000)
info, signals nk.rsp_peaks (cleaned)

amplitude nk.rsp_amplitude (cleaned, signals)
fig nk.signal plot (pd.DataFrame ({"RSP": rsp, "Amplitude": amplitude}),

subplots=True)
fig

rsp_analyze (data, sampling_rate=1000, method="auto’)
Performs RSP analysis on either epochs (event-related analysis) or on longer periods of data such as resting-
state data.

Parameters

* data (dict or DataFrame) — A dictionary of epochs, containing one DataFrame per epoch,
usually obtained via epochs_create(), or a DataFrame containing all epochs, usually ob-
tained via epochs_to_df{). Can also take a DataFrame of processed signals from a longer
period of data, typically generated by rsp_process() or bio_process(). Can also take a dict
containing sets of separate periods of data.

7.4. RSP 135

NeuroKit2, Release 0.0.39

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).
Defaults to 1000Hz.

* method (str) — Can be one of ‘event-related’ for event-related analysis on epochs, or
‘interval-related’ for analysis on longer periods of data. Defaults to ‘auto’ where the
right method will be chosen based on the mean duration of the data (‘event-related’ for
duration under 10s).

Returns DataFrame — A dataframe containing the analyzed RSP features. If event-related anal-
ysis is conducted, each epoch is indicated by the Label column. See rsp_eventrelated() and
rsp_intervalrelated() docstrings for details.

See also:

bio_process(), rsp_process (), epochs_create(), rsp_eventrelated(),
rsp_intervalrelated()

Examples

neurokit2

data nk.data ("bio_eventrelated_100hz")

df, info nk.bio_process (rsp=data["RSP"], sampling rate=100)
events nk.events_find(data["Photosensor"], threshold_keep='below',
event_conditions=["Negative", "Neutral", "Neutral",
"Negative"])

epochs nk.epochs_create (df, events, sampling rate=100, epochs_start
epochs_end=1.9)

nk.rsp_analyze (epochs, sampling_ rate=100)

data nk.data ("bio_resting_5min_100hz")

df, info nk.rsp_process (data["RSP"], sampling_rate=100)

nk.rsp_analyze (df, sampling_rate=100)

rsp_clean (rsp_signal, sampling_rate=1000, method="khodadad2018")
Preprocess a respiration (RSP) signal.

Clean a respiration signal using different sets of parameters, such as ‘khodadad2018’ (linear detrending fol-
lowed by a fifth order 2Hz low-pass IIR Butterworth filter) or BioSPPy (second order0.1 - 0.35 Hz bandpass
Butterworth filter followed by a constant detrending).

Parameters

* rsp_signal (Union[list, np.array, pd.Series]) — The raw respiration channel (as measured,
for instance, by a respiration belt).

* sampling_rate (inf) — The sampling frequency of rsp_signal (in Hz, i.e., sam-
ples/second).

136 Chapter 7. Functions

https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/resp.py

NeuroKit2, Release 0.0.39

* method (str) — The processing pipeline to apply. Can be one of “khodadad2018” (default)
or “biosppy”.

Returns array — Vector containing the cleaned respiratory signal.
See also:

rsp_findpeaks(),signal_rate (), rsp_amplitude (), rsp_process (), rsp_plot ()

Examples

pandas as pd
neurokit2 as nk

rsp nk.rsp_simulate (duration=30, sampling_rate=50, noise=0.01)
signals pd.DataFrame ({ "RSP_Raw": rsp,
"RSP_Khodadad2018": nk.rsp_clean(rsp, sampling__
rate-50, method-"khodadad2018"),
"RSP_BioSPPy": nk.rsp_clean(rsp, sampling_rate=50,

method="biosppy") })
fig signals.plot ()
fig

References
¢ Khodadad et al. (2018)

rsp_eventrelated (epochs, silent=False)
Performs event-related RSP analysis on epochs.

Parameters

¢ epochs (Union[dict, pd.DataFrame]) — A dict containing one DataFrame per event/trial,
usually obtained via epochs_create(), or a DataFrame containing all epochs, usually ob-
tained via epochs_to_df{().

« silent (bool) — If True, silence possible warnings.

Returns DataFrame — A dataframe containing the analyzed RSP features for each epoch,
with each epoch indicated by the Label column (if not present, by the Index col-
umn). The analyzed features consist of the following: - “RSP_Rate_Max”: the max-
imum respiratory rate after stimulus onset. - “RSP_Rate_Min”: the minimum respi-
ratory rate after stimulus onset. - “RSP_Rate_Mean”: the mean respiratory rate af-
ter stimulus onset. - “RSP_Rate_Max_Time”: the time at which maximum respiratory
rate occurs. - “RSP_Rate_Min_Time”: the time at which minimum respiratory rate oc-
curs. - “RSP_Amplitude_Max”: the maximum respiratory amplitude after stimulus on-
set. - “RSP_Amplitude_Min”: the minimum respiratory amplitude after stimulus on-
set. - “RSP_Amplitude_Mean”: the mean respiratory amplitude after stimulus onset. -
“RSP_Phase”: indication of whether the onset of the event concurs with respiratory inspi-
ration (1) or expiration (0). - “RSP_PhaseCompletion”: indication of the stage of the current
respiration phase (0 to 1) at the onset of the event.

See also:

events_find (), epochs_create(),bio_process/()

7.4. RSP 137

https://iopscience.iop.org/article/10.1088/1361-6579/aad7e6/meta

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

rsp, info nk.rsp_process (nk.rsp_simulate (duration=12
epochs nk.epochs_create (rsp, events=[5000, 10 , 15000], epochs_start
epochs_end=1.9)

rspl nk.rsp_eventrelated (epochs)
rspl

data nk.data ("bio_eventrelated_100hz")

df, info nk.bio_process (rsp=data["RSP"], sampling rate=100)

events nk.events_find(data["Photosensor"], threshold_keep='below',
event_conditions=["Negative", "Neutral", "Neutral",

"Negative"])
epochs nk.epochs_create (df, events, sampling rate=100, epochs_start
epochs_end=2.9)

rsp2 nk.rsp_eventrelated (epochs)
rsp2

rsp_findpeaks (rsp_cleaned, sampling_rate=1000, method="khodadad2018', amplitude_min=0.3)
Extract extrema in a respiration (RSP) signal.

Low-level function used by rsp_peaks() to identify inhalation peaks and exhalation troughs in a preprocessed
respiration signal using different sets of parameters. See rsp_peaks() for details.

Parameters

* rsp_cleaned (Union/list, np.array, pd.Series]) — The cleaned respiration channel as re-
turned by rsp_clean().

» sampling_rate (inf) — The sampling frequency of ‘rsp_cleaned’ (in Hz, i.e., sam-
ples/second).

* method (str) — The processing pipeline to apply. Can be one of “khodadad2018” (default)
or “biosppy”.

» amplitude_min (floar) — Only applies if method is “khodadad2018”. Extrema that have a
vertical distance smaller than (outlier_threshold * average vertical distance) to any direct
neighbour are removed as false positive outliers. L.e., outlier_threshold should be a float
with positive sign (the default is 0.3). Larger values of outlier_threshold correspond to
more conservative thresholds (i.e., more extrema removed as outliers).

Returns info (dict) — A dictionary containing additional information, in this case the samples at
which inhalation peaks and exhalation troughs occur, accessible with the keys “RSP_Peaks”,
and “RSP_Troughs”, respectively.

See also:

rsp_clean(), rsp_fixpeaks(), rsp_peaks(), signal_rate(), rsp_amplitude(),
rsp_process (), rsp_plot ()

138 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

rsp nk.rsp_simulate (duration=30, respiratory_rate=15)

cleaned nk.rsp_clean(rsp, sampling rate=1000)

info nk.rsp_findpeaks (cleaned)

fig nk.events_plot ([info["RSP_Peaks"], info["RSP_Troughs"]], cleaned)
fig

rsp_fixpeaks (peaks, troughs=None)
Correct RSP peaks.

Low-level function used by rsp_peaks() to correct the peaks found by rsp_findpeaks(). Doesn’t do anything for
now for RSP. See rsp_peaks() for details.

Parameters

* peaks (list or array or DataFrame or Series or dict) — The samples at which the inhalation
peaks occur. If a dict or a DataFrame is passed, it is assumed that these containers were
obtained with rsp_findpeaks().

* troughs (list or array or DataFrame or Series or dict) — The samples at which the inhala-
tion troughs occur. If a dict or a DataFrame is passed, it is assumed that these containers
were obtained with rsp_findpeaks().

Returns info (dict) — A dictionary containing additional information, in this case the samples at
which inhalation peaks and exhalation troughs occur, accessible with the keys “RSP_Peaks”,
and “RSP_Troughs”, respectively.

See also:

rsp_clean(), rsp_findpeaks (), rsp_peaks(), rsp_amplitude(), rsp_process(),
rsp_plot ()

Examples

neurokit2 as nk

rsp nk.rsp_simulate (duration=30, respirator
cleaned nk.rsp_clean(rsp, sampling_rate=10

info nk.rsp_findpeaks (cleaned)

info nk.rsp_fixpeaks (info)

fig nk.events_plot ([info["RSP_Peaks"], info["RSP_Troughs"]], cleaned)
fig

rsp_intervalrelated (data, sampling_rate=1000)
Performs RSP analysis on longer periods of data (typically > 10 seconds), such as resting-state data.

Parameters

* data (DataFrame or dict) — A DataFrame containing the different processed signal(s) as
different columns, typically generated by rsp_process() or bio_process(). Can also take a
dict containing sets of separately processed DataFrames.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).

Returns DataFrame — A dataframe containing the analyzed RSP features. The analyzed
features consist of the following: - “RSP_Rate_Mean”: the mean heart rate. -

7.4. RSP 139

NeuroKit2, Release 0.0.39

“RSP_Amplitude_Mean”: the mean respiratory amplitude. - “RSP_RRV”: the different res-
piratory rate variability metrices. See rsp_rrv() docstrings for details.

See also:

bio_process (), rsp_eventrelated()

Examples

neurokit2 as nk

data nk.data ("bio_resting_5min_100hz")

df, info nk.rsp_process (data["RSP"], sampling_rate=100)

nk.rsp_intervalrelated (df)

epochs nk.epochs_create (df, events=[0, 15000], sampling_ rate=100, epochs_
end=150)
nk.rsp_intervalrelated (epochs)

rsp_peaks (rsp_cleaned, sampling_rate=1000, method="'khodadad2018', amplitude_min=0.3)
Identify extrema in a respiration (RSP) signal.

This function rsp_findpeaks() and rsp_fixpeaks to identify and process inhalation peaks and exhalation troughs
in a preprocessed respiration signal using different sets of parameters, such as:

¢ "Khodadad et al. (2018)
<https://iopscience.iop.org/article/10.1088/1361-6579/aad7e6/meta>" _
* "BioSPPy
<https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/resp.py>"_
Parameters

* rsp_cleaned (Union/list, np.array, pd.Series]) — The cleaned respiration channel as re-
turned by rsp_clean().

» sampling_rate (inf) — The sampling frequency of ‘rsp_cleaned’ (in Hz, i.e., sam-
ples/second).

* method (str) — The processing pipeline to apply. Can be one of “khodadad2018” (default)
or “biosppy”.

» amplitude_min (floar) — Only applies if method is “khodadad2018”. Extrema that have a
vertical distance smaller than (outlier_threshold * average vertical distance) to any direct
neighbour are removed as false positive outliers. i.e., outlier_threshold should be a float
with positive sign (the default is 0.3). Larger values of outlier_threshold correspond to
more conservative thresholds (i.e., more extrema removed as outliers).

Returns

* info (dict) — A dictionary containing additional information, in this case the sam-
ples at which inhalation peaks and exhalation troughs occur, accessible with the keys
“RSP_Peaks”, and “RSP_Troughs”, respectively.

140 Chapter 7. Functions

https://iopscience.iop.org/article/10.1088/1361-6579/aad7e6/meta
https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/resp.py

NeuroKit2, Release 0.0.39

 peak_signal (DataFrame) — A DataFrame of same length as the input signal in which
occurences of inhalation peaks and exhalation troughs are marked as “1” in lists of ze-
ros with the same length as rsp_cleaned. Accessible with the keys “RSP_Peaks” and
“RSP_Troughs” respectively.

See also:

rsp_clean (), signal_rate (), rsp_findpeaks (), rsp_fixpeaks (), rsp_amplitude(),
rsp_process (), rsp_plot ()

Examples

neurokit2 as nk
pandas as pd

rsp nk.rsp_simulate (duration=30, respiratory_rate-15)
cleaned nk.rsp_clean(rsp, sampling rate=1000)

peak_signal, info nk.rsp_peaks (cleaned, sampling_rate=1000)

data pd.concat ([pd.DataFrame ({"RSP": rsp}), peak_signal], axis=1)
fig nk.signal_plot (data)

fig

rsp_phase (peaks, troughs=None, desired_length=None)
Compute respiratory phase (inspiration and expiration).

Finds the respiratory phase, labelled as 1 for inspiration and O for expiration.
Parameters

* peaks (list or array or DataFrame or Series or dict) — The samples at which the inhalation
peaks occur. If a dict or a DataFrame is passed, it is assumed that these containers were
obtained with rsp_findpeaks().

* troughs (list or array or DataFrame or Series or dict) — The samples at which the inhala-
tion troughs occur. If a dict or a DataFrame is passed, it is assumed that these containers
were obtained with rsp_findpeaks().

¢ desired_length (inf) — By default, the returned respiration rate has the same number of
elements as peaks. If set to an integer, the returned rate will be interpolated between
peaks over desired_length samples. Has no effect if a DataFrame is passed in as the
peaks argument.

Returns signals (DataFrame) — A DataFrame of same length as rsp_signal containing the fol-
lowing columns: - “RSP_Inspiration”: breathing phase, marked by “1” for inspiration and
“0” for expiration. - “RSP_Phase_Completion”: breathing phase completion, expressed in
percentage (from O to 1), representing the stage of the current respiratory phase.

See also:

rsp_clean (), rsp_peaks (), rsp_amplitude (), rsp_process (), rsp_plot ()

7.4. RSP 141

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

rsp nk.rsp_simulate (duration=30, respiratory_rate=15)
cleaned nk.rsp_clean(rsp, sampling rate=1000)

peak_signal, info nk.rsp_peaks (cleaned)

phase nk.rsp_phase (peak_signal, desired_length=len (cleaned))
fig nk.signal_plot ([rsp, phase], standardize-=True)
fig

rsp_plot (rsp_signals, sampling_rate=None)
Visualize respiration (RSP) data.

Parameters
 rsp_signals (DataFrame) — DataFrame obtained from rsp_process().

» sampling_rate (inf) — The desired sampling rate (in Hz, i.e., samples/second).

Examples

neurokit2 as nk

rsp nk.rsp_simulate (duration=90, respiratory_rate=15

rsp_signals, info nk.rsp_process (rsp, sampling rate=1000)
fig nk.rsp_plot (rsp_signals)
fig

Returns fig — Figure representing a plot of the processed rsp signals.

See also:
rsp_process ()

rsp_process (rsp_signal, sampling_rate=1000, method="khodadad2018’)
Process a respiration (RSP) signal.

Convenience function that automatically processes a respiration signal with one of the following methods:
¢ "Khodadad et al. (2018)
<https://iopscience.iop.org/article/10.1088/1361-6579/aad7e6/meta>" _
* "BioSPPy
<https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/resp.py>"_
Parameters

* rsp_signal (Union[list, np.array, pd.Series]) — The raw respiration channel (as measured,
for instance, by a respiration belt).

o sampling_rate (int) — The sampling frequency of rsp_signal (in Hz, i.e., sam-
ples/second).

* method (str) — The processing pipeline to apply. Can be one of “khodadad2018” (default)
or “biosppy”.

Returns

142 Chapter 7. Functions

https://iopscience.iop.org/article/10.1088/1361-6579/aad7e6/meta
https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/resp.py

NeuroKit2, Release 0.0.39

* signals (DataFrame) — A DataFrame of same length as rsp_signal containing the fol-
lowing columns: - “RSP_Raw”: the raw signal. - “RSP_Clean”: the cleaned signal. -
“RSP_Peaks”: the inhalation peaks marked as “1” in a list of zeros. - “RSP_Troughs”:
the exhalation troughs marked as “1” in a list of zeros. - “RSP_Rate”: breathing rate
interpolated between inhalation peaks. - “RSP_Amplitude”: breathing amplitude inter-
polated between inhalation peaks. - “RSP_Phase”: breathing phase, marked by “1” for
inspiration and “0” for expiration. - “RSP_PhaseCompletion”: breathing phase comple-
tion, expressed in percentage (from O to 1), representing the stage of the current respira-
tory phase.

* info (dict) — A dictionary containing the samples at which inhalation peaks and exhalation
troughs occur, accessible with the keys “RSP_Peaks”, and “RSP_Troughs”, respectively.

See also:

rsp_clean(), rsp_findpeaks (), signal_rate (), rsp_amplitude (), rsp_plot ()

Examples

neurokit2 as nk

rsp nk.rsp_simulate (duration=90, respiratory_rate=15)

signals, info nk.rsp_process (rsp, sampling rate=1000)
fig nk.rsp_plot (signals)
fig

rsp_rate (peaks, sampling_rate=1000, desired_length=None, interpolation_method="monotone_cubic')
Calculate signal rate from a series of peaks.

This function can also be called either via ecg_rate (), "ppg_rate () or rsp_rate () (aliases provided
for consistency).

Parameters

peaks (Union[list, np.array, pd.DataFrame, pd.Series, dict]) — The samples at which
the peaks occur. If an array is passed in, it is assumed that it was obtained with sig-
nal_findpeaks(). If a DataFrame is passed in, it is assumed it is of the same length as the
input signal in which occurrences of R-peaks are marked as “1”, with such containers
obtained with e.g., ecg_findpeaks() or rsp_findpeaks().

sampling_rate (inf) — The sampling frequency of the signal that contains peaks (in Hz,
i.e., samples/second). Defaults to 1000.

desired_length (int) — If left at the default None, the returned rated will have the same
number of elements as peaks. If set to a value larger than the sample at which the last
peak occurs in the signal (i.e., peaks[-1]), the returned rate will be interpolated between
peaks over desired_length samples. To interpolate the rate over the entire duration of the
signal, set desired_length to the number of samples in the signal. Cannot be smaller than
or equal to the sample at which the last peak occurs in the signal. Defaults to None.

interpolation_method (str) — Method used to interpolate the rate between peaks. See
signal_interpolate(). ‘monotone_cubic’ is chosen as the default interpolation method
since it ensures monotone interpolation between data points (i.e., it prevents physiolog-
ically implausible “overshoots” or “undershoots” in the y-direction). In contrast, the
widely used cubic spline interpolation does not ensure monotonicity.

Returns array — A vector containing the rate.

7.4. RSP 143

NeuroKit2, Release 0.0.39

See also:

signal_findpeaks (), signal_fixpeaks (), signal_plot ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10, sampling_rate=1000, frequency=1)
info nk.signal_findpeaks (signal)

rate nk.signal_rate (peaks=info["Peaks"], desired_length=len(signal))
fig nk.signal_plot (rate)
fig

rsp_rrv (rsp_rate, peaks=None, sampling_rate=1000, show=False, silent=True)
Computes time domain and frequency domain features for Respiratory Rate Variability (RRV) analysis.

Parameters
e rsp_rate (array) — Array containing the respiratory rate, produced by signal_rate().

» peaks (dict) — The samples at which the inhalation peaks occur. Dict returned by
rsp_peaks(). Defaults to None.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).

* show (bool) — If True, will return a Poincaré plot, a scattergram, which plots each breath-
to-breath interval against the next successive one. The ellipse centers around the average
breath-to-breath interval. Defaults to False.

* silent (bool) — If False, warnings will be printed. Default to True.

Returns DataFrame — DataFrame consisting of the computed RRV metrics, which includes: -
“RRV_SDBB”: the standard deviation of the breath-to-breath intervals. - “RRV_RMSSD”: the
root mean square of successive differences of the breath-to-breath intervals. - “RRV_SDSD”:
the standard deviation of the successive differences between adjacent breath-to-breath inter-
vals. - “RRV_BBx”: the number of successive interval differences that are greater than x
seconds. - “RRV-pBBx”: the proportion of breath-to-breath intervals that are greater than x
seconds, out of the total number of intervals. - “RRV_VLF”: spectral power density pertaining
to very low frequency band i.e., 0 to .04 Hz by default. - “RRV_LF”’: spectral power density
pertaining to low frequency band i.e., .04 to .15 Hz by default. - “RRV_HF”: spectral power
density pertaining to high frequency band i.e., .15 to .4 Hz by default. - “RRV_LFHF”: the
ratio of low frequency power to high frequency power. - “RRV_LFn”: the normalized low fre-
quency, obtained by dividing the low frequency power by the total power. - “RRV_HFn”: the
normalized high frequency, obtained by dividing the low frequency power by total power. -
“RRV_SDI”: SD1 is a measure of the spread of breath-to-breath intervals on the Poincaré plot
perpendicular to the line of identity. It is an index of short-term variability. - “RRV_SD2”: SD2
is a measure of the spread of breath-to-breath intervals on the Poincaré plot along the line of
identity. It is an index of long-term variability. - “RRV_SD2SD1”’: the ratio between short and
long term fluctuations of the breath-to-breath intervals (SD2 divided by SD1). - “RRV_ApEn’:
the approximate entropy of RRYV, calculated by entropy_approximate(). - “RRV_SampEn”: the
sample entropy of RRYV, calculated by entropy_sample(). - “RRV_DFA_I": the “short-term”
fluctuation value generated from Detrended Fluctuation Analysis i.e. the root mean square de-
viation from the fitted trend of the breath-to-breath intervals. Will only be computed if mora
than 160 breath cycles in the signal. - “RRV_DFA_2": the long-term fluctuation value. Will
only be computed if mora than 640 breath cycles in the signal.

144 Chapter 7. Functions

NeuroKit2, Release 0.0.39

See also:

signal_rate(), rsp_peaks (), signal_power (), entropy_sample (),
entropy_approximate ()

Examples

neurokit2 as nk

rsp nk.rsp_simulate (duration=90, respiratory_rate=15
rsp, info nk.rsp_process (rsp)
rrv nk.rsp_rrv(rsp, show=True)

References
* Soni, R., & Muniyandi, M. (2019). Breath rate variability: a novel measure to study the meditation

effects. International Journal of Yoga, 12(1), 45.

rsp_simulate (duration=10, length=None, sampling_rate=1000, noise=0.01, respiratory_rate=15,

method="breathmetrics', random_state=None)
Simulate a respiratory signal.

Generate an artificial (synthetic) respiratory signal of a given duration and rate.

Parameters

duration (int) — Desired length of duration (s).

sampling_rate (inf) — The desired sampling rate (in Hz, i.e., samples/second).

length (inf) — The desired length of the signal (in samples).

noise (float) — Noise level (amplitude of the laplace noise).

respiratory_rate (float) — Desired number of breath cycles in one minute.

method (str) — The model used to generate the signal. Can be ‘sinusoidal’ for a simu-
lation based on a trigonometric sine wave that roughly approximates a single respiratory
cycle. If ‘breathmetrics’ (default), will use an advanced model desbribed Noto, et al.
(2018).

random_state (int) — Seed for the random number generator.

Returns array — Vector containing the respiratory signal.

Examples

pandas as pd
numpy as np
neurokit2 as nk

rspl nk.rsp_simulate (duration=30, method="sinusoidal")
rsp2 nk.rsp_simulate (duration=30, method="breathmetrics")

fig pd.DataFrame ({"RSP_Simple": rspl, "RSP_Complex": rsp2})
plot (subplots=True)
fig

7.4. RSP 145

https://github.com/zelanolab/breathmetrics/blob/master/simulateRespiratoryData.m
https://github.com/zelanolab/breathmetrics/blob/master/simulateRespiratoryData.m

NeuroKit2, Release 0.0.39

References

Noto, T., Zhou, G., Schuele, S., Templer, J., & Zelano, C. (2018). Automated analysis of breathing waveforms
using BreathMetrics: A respiratory signal processing toolbox. Chemical Senses, 43(8), 583-597. https://doi.
org/10.1093/chemse/bjy045

See also:

rsp_clean(), rsp_findpeaks (), signal_rate (), rsp_process (), rsp_plot ()

7.5 EDA

Submodule for NeuroKit.

eda_analyze (data, sampling_rate=1000, method="auto")
Performs EDA analysis on either epochs (event-related analysis) or on longer periods of data such as resting-
state data.

Parameters

* data (Union/[dict, pd.DataFrame]) — A dictionary of epochs, containing one DataFrame
per epoch, usually obtained via epochs_create(), or a DataFrame containing all epochs,
usually obtained via epochs_to_df{). Can also take a DataFrame of processed signals
from a longer period of data, typically generated by eda_process() or bio_process(). Can
also take a dict containing sets of separate periods of data.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).
Defaults to 1000Hz.

* method (str) — Can be one of ‘event-related’ for event-related analysis on epochs, or
‘interval-related’ for analysis on longer periods of data. Defaults to ‘auto’ where the
right method will be chosen based on the mean duration of the data (‘event-related’” for
duration under 10s).

Returns DataFrame — A dataframe containing the analyzed EDA features. If event-related anal-
ysis is conducted, each epoch is indicated by the Label column. See eda_eventrelated() and
eda_intervalrelated() docstrings for details.

See also:

bio_process(), eda_process (), epochs_create (), eda_eventrelated(),
eda_intervalrelated()

Examples

neurokit2

data nk.data ("bio_eventrelated_100hz")

df, info nk.bio_process (eda-data["EDA"], sampling_ rate=100)

events nk.events_find(data["Photosensor"], threshold_keep-'below',
event_conditions=["Negative", "Neutral", "Neutral",
"Negative"])
epochs nk.epochs_create (df, events, sampling rate-100, epochs_start
epochs end-1.9

(continues on next page

146 Chapter 7. Functions

https://doi.org/10.1093/chemse/bjy045
https://doi.org/10.1093/chemse/bjy045

NeuroKit2, Release 0.0.39

(continued from previous page)

nk.eda_analyze (epochs, sampling_rate=100)

data nk.data ("bio_resting_8min_100hz")

df, info nk.eda_process (data["EDA"], sampling_ rate=100)

nk.eda_analyze (df, sampling_ rate=100)

eda_autocor (eda_cleaned, sampling_rate=1000, lag=4)
Computes autocorrelation measure of raw EDA signal i.e., the correlation between the time series data and a
specified time-lagged version of itself.

Parameters
* eda_cleaned (Union/list, np.array, pd.Series]) — The cleaned EDA signal.

» sampling_rate (inf) — The sampling frequency of raw EDA signal (in Hz, i.e., sam-
ples/second). Defaults to 1000Hz.

* lag (int) — Time lag in seconds. Defaults to 4 seconds to avoid autoregressive correlations
approaching 1, as recommended by Halem et al. (2020).

Returns float — Autocorrelation index of the eda signal.
See also:

eda_simulate(),eda _clean()

Examples

neurokit2 as nk

L C

eda_signal nk.eda_simulate (duration—=5, scr_number-5, drift-0.]
eda_cleaned nk.eda_clean (eda_signal)

cor nk.eda_autocor (eda_cleaned)

cor

References

* Halem, S., van Roekel, E., Kroencke, L., Kuper, N., & Denissen, J. (2020). Moments That Matter? On
the Complexity of Using Triggers Based on Skin Conductance to Sample Arousing Events Within an
Experience Sampling Framework. European Journal of Personality.

eda_changepoints (eda_cleaned)
Calculate the number of change points using of the skin conductance signal in terms of mean and variance.
Defaults to an algorithm penalty of 10000, as recommended by Halem et al. (2020).

Parameters eda_cleaned (Union/list, np.array, pd.Series]) — The cleaned EDA signal.

Returns float — Number of changepoints in the

7.5. EDA 147

NeuroKit2, Release 0.0.39

See also:

eda_simulate ()

Examples

neurokit2 as nk

eda_signal nk.eda_simulate (duration—-5, scr_number-5,
eda_cleaned nk.eda_clean (eda_signal)

changepoints nk.eda_changepoints (eda_cleaned)
changepoints

References

* Halem, S., van Roekel, E., Kroencke, L., Kuper, N., & Denissen, J. (2020). Moments That Matter? On
the Complexity of Using Triggers Based on Skin Conductance to Sample Arousing Events Within an
Experience Sampling Framework. European Journal of Personality.

eda_clean (eda_signal, sampling_rate=1000, method="neurokit')
Preprocess Electrodermal Activity (EDA) signal.
Parameters
* eda_signal (Union[list, np.array, pd.Series]) — The raw EDA signal.

* sampling_rate (inf) — The sampling frequency of rsp_signal (in Hz, i.e., sam-
ples/second).

* method (str) — The processing pipeline to apply. Can be one of ‘neurokit’ (default) or
‘biosppy’.
Returns array — Vector containing the cleaned EDA signal.

See also:

eda_simulate (), eda_findpeaks (), eda_process(),eda_plot ()

Examples

pandas as pd
neurokit2 as nk

eda nk.eda_simulate (duration=30, sampling_ rate=100, scr_number=10, noise
01, drift=0.02)
signals pd.DataFrame ({"EDA_Raw": eda,

"EDA_BioSPPy": nk.eda_clean(eda, sampling rate=100,

method="'biosppy'),
"EDA_NeuroKit": nk.eda_clean(eda, sampling_rate=100,
method="neurokit"') })
fig signals.plot ()
fig

eda_eventrelated (epochs, silent=False)
Performs event-related EDA analysis on epochs.

148 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Parameters

* epochs (Union[dict, pd.DataFrame]) — A dict containing one DataFrame per event/trial,
usually obtained via epochs_create(), or a DataFrame containing all epochs, usually ob-
tained via epochs_to_df{().

« silent (bool) — If True, silence possible warnings.
Returns

DataFrame — A dataframe containing the analyzed EDA features for each epoch, with each
epoch indicated by the Label column (if not present, by the Index column). The analyzed
features consist the following:

e "EDA_SCR’: indication of whether Skin Conductance Response (SCR) occurs following
the event (1 if an SCR onset is present and 0 if absent) and if so, its corresponding peak
amplitude, time of peak, rise and recovery time. If there is no occurrence of SCR, nans
are displayed for the below features.

* "EDA_Peak_Amplitude”: the maximum amplitude of the phasic component of the signal.
* "SCR_Peak_Amplitude”: the peak amplitude of the first SCR in each epoch.
* "SCR_Peak_Amplitude_Time”: the timepoint of each first SCR peak amplitude.

e ”"SCR_RiseTime”: the risetime of each first SCR i.e., the time it takes for SCR to reach
peak amplitude from onset.

* "SCR_RecoveryTime”: the half-recovery time of each first SCR i.e., the time it takes for
SCR to decrease to half amplitude.

See also:

events_find (), epochs_create(),bio_process|()

Examples

neurokit2 as nk

eda nk.eda_simulate (duration—-15, scr_number-3)

eda_signals, info nk.eda_process (eda, sampling_ rate 0
epochs nk.epochs_create (eda_signals, events=[5000, (500 sampling__
rate ©

epochs_start=-0.1, epochs_end
nk.eda_eventrelated (epochs)
data nk.data ("bio_eventrelated_100hz")

df, info nk.bio_process (eda-data["EDA"], sampling_rate-=100)
events nk.events_find(data["Photosensor"], threshold_keep='below',
event_conditions=["Negative", "Neutral", "Neutral",
"Negative"])

epochs nk.epochs_create (df, events, sampling rate=100, epochs_start

(continues on next page

EDA 149

NeuroKit2, Release 0.0.39

(continued from previous page)

nk.eda_eventrelated (epochs)

eda_findpeaks (eda_phasic, sampling_rate=1000, method="neurokit', amplitude_min=0.1)
Identify Skin Conductance Responses (SCR) in Electrodermal Activity (EDA).

Low-level function used by eda_peaks() to identify Skin Conductance Responses (SCR) peaks in the phasic
component of Electrodermal Activity (EDA) with different possible methods. See eda_peaks() for details.

Parameters

* eda_phasic (Union[list, np.array, pd.Series]) — The phasic component of the EDA signal
(from eda_phasic()).

* sampling_rate (inf) — The sampling frequency of the EDA signal (in Hz, i.e., sam-
ples/second).

* method (str) — The processing pipeline to apply. Can be one of “neurokit” (default),
“gamboa2008”, “kim2004” (the default in BioSPPy) or “vanhalem2020”.

* amplitude_min (float) — Only used if ‘method’ is ‘neurokit’ or ‘kim2004’. Minimum
threshold by which to exclude SCRs (peaks) as relative to the largest amplitude in the
signal.

Returns info (dict) — A dictionary containing additional information, in this case the aplitude of
the SCR, the samples at which the SCR onset and the SCR peaks occur. Accessible with the
keys “SCR_Amplitude”, “SCR_Onsets”, and “SCR_Peaks” respectively.

See also:

eda_simulate (), eda_clean (), eda_phasic(), eda_fixpeaks (), eda_peaks (),
eda_process (), eda_plot ()

Examples

neurokit2 as nk

=

eda_signal nk.eda_simulate (duration=30, scr_number=5, drift=0.1,
eda_cleaned nk.eda_clean (eda_signal)

eda nk.eda_phasic (eda_cleaned)

eda_phasic eda["EDA_Phasic"] .values

gamboa2008 nk.eda_findpeaks (eda_phasic, method="gamboa2008")
kim2004 nk.eda_findpeaks (eda_phasic, method="kim2004")
neurokit nk.eda_findpeaks (eda_phasic, method-"neurokit")
vanhalem2020 nk.eda_findpeaks (eda_phasic, method="vanhalem2020")
fig nk.events_plot ([gamboa2008 ["SCR_Peaks"], kim2004["SCR_Peaks"],
vanhalem2020 ["SCR_Peaks"],
neurokit ["SCR_Peaks"]], eda_phasic)

fig

150 Chapter 7. Functions

NeuroKit2, Release 0.0.39

References

* Gamboa, H. (2008). Multi-modal behavioral biometrics based on hci and electrophysiology. PhD The-
sisUniversidade.

* Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring
of physiological signals. Medical and biological engineering and computing, 42(3), 419-427.

» van Halem, S., Van Roekel, E., Kroencke, L., Kuper, N., & Denissen, J. (2020). Moments That Matter?
On the Complexity of Using Triggers Based on Skin Conductance to Sample Arousing Events Within an
Experience Sampling Framework. European Journal of Personality.

eda_fixpeaks (peaks, onsets=None, height=None)
Correct Skin Conductance Responses (SCR) peaks.

Low-level function used by eda_peaks() to correct the peaks found by eda_findpeaks(). Doesn’t do anything for
now for EDA. See eda_peaks() for details.

Parameters

 peaks (list or array or DataFrame or Series or dict) — The samples at which the SCR
peaks occur. If a dict or a DataFrame is passed, it is assumed that these containers were
obtained with eda_findpeaks().

* onsets (list or array or DataFrame or Series or dict) — The samples at which the SCR
onsets occur. If a dict or a DataFrame is passed, it is assumed that these containers were
obtained with eda_findpeaks(). Defaults to None.

* height (list or array or DataFrame or Series or dict) — The samples at which the ampli-
tude of the SCR peaks occur. If a dict or a DataFrame is passed, it is assumed that these
containers were obtained with eda_findpeaks(). Defaults to None.

Returns info (dict) — A dictionary containing additional information, in this case the aplitude of
the SCR, the samples at which the SCR onset and the SCR peaks occur. Accessible with the
keys “SCR_Amplitude”, “SCR_Onsets”, and “SCR_Peaks” respectively.

See also:

eda_simulate (), eda_clean (), eda_phasic(), eda_findpeaks (), eda_peaks (),
eda_process (), eda_plot ()

Examples

neurokit2 as nk

eda_signal nk.eda_simulate (duration—-30, scr_number-5, drift-0.1, noise-0)
eda_cleaned nk.eda_clean (eda_signal)

eda nk.eda_phasic(eda_cleaned)

eda_phasic eda["EDA_Phasic"] .values

info nk.eda_findpeaks (eda_phasic)
info nk.eda_fixpeaks (info)

fig nk.events_plot (info["SCR_Peaks"], eda_phasic)
fig

7.5. EDA 151

NeuroKit2, Release 0.0.39

eda_intervalrelated (data)
Performs EDA analysis on longer periods of data (typically > 10 seconds), such as resting-state data.

Parameters data (Union/[dict, pd.DataFrame]) — A DataFrame containing the different processed
signal(s) as different columns, typically generated by eda_process() or bio_process(). Can
also take a dict containing sets of separately processed DataFrames.

Returns DataFrame — A dataframe containing the analyzed EDA features. The analyzed features
consist of the following: - “SCR_Peaks_N": the number of occurrences of Skin Conductance
Response (SCR). - “SCR_Peaks_Amplitude_Mean”: the mean amplitude of the SCR peak
occurrences.

See also:

bio_process (), eda_eventrelated()

Examples

neurokit2 as nk

data nk.data ("bio_resting_8min_100hz")

df, info nk.eda_process (data["EDA"], sampling_rate-100)

nk.eda_intervalrelated (df)

epochs nk.epochs_create (df, events=[0, 25300], sampling_rate=100, epochs_
end-20)

nk.eda_intervalrelated (epochs)

eda_peaks (eda_phasic, sampling_rate=1000, method="neurokit', amplitude_min=0.1)
Identify Skin Conductance Responses (SCR) in Electrodermal Activity (EDA).

Identify Skin Conductance Responses (SCR) peaks in the phasic component of Electrodermal Activity (EDA)
with different possible methods, such as:

¢ “Gamboa, H. (2008)
<http://www.1x.it.pt/~afred/pub/thesisHugoGamboa.pdf>"_ - Kim et al. (2004)
Parameters

 eda_phasic (Union[list, np.array, pd.Series]) — The phasic component of the EDA signal
(from eda_phasic()).

» sampling_rate (inf) — The sampling frequency of the EDA signal (in Hz, i.e., sam-
ples/second).

* method (str) — The processing pipeline to apply. Can be one of “neurokit” (default),
“gambo0a2008” or “kim2004” (the default in BioSPPy).

o amplitude_min (float) — Only used if ‘method’ is ‘neurokit’ or ‘kim2004’. Minimum
threshold by which to exclude SCRs (peaks) as relative to the largest amplitude in the
signal.

Returns

152 Chapter 7. Functions

http://www.lx.it.pt/~afred/pub/thesisHugoGamboa.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.7385&rep=rep1&type=pdf

NeuroKit2, Release 0.0.39

* info (dict) — A dictionary containing additional information, in this case the aplitude of
the SCR, the samples at which the SCR onset and the SCR peaks occur. Accessible with
the keys “SCR_Amplitude”, “SCR_Onsets”, and “SCR_Peaks” respectively.

* signals (DataFrame) — A DataFrame of same length as the input signal in which oc-
curences of SCR peaks are marked as “1” in lists of zeros with the same length as
eda_cleaned. Accessible with the keys “SCR_Peaks”.

See also:

eda_simulate (), eda_clean (), eda_phasic(),eda_process (), eda_plot ()

Examples

neurokit2 as nk

=

eda_signal nk.eda_simulate (duration—-30, scr_number-5, drift-0.1, noise-0,
sampling_rate=100)

eda_cleaned nk.eda_clean (eda_signal, sampling_rate-=100)

eda nk.eda_phasic(eda_cleaned, sampling_rate=100)

eda_phasic eda ["EDA_Phasic"] .values

gamboa2008 nk.eda_peaks (eda_phasic, method="gamboa2008")
kim2004 nk.eda_peaks (eda_phasic, method-"kim2004")
_, neurokit nk.eda_peaks (eda_phasic, method="neurokit")
nk.events_plot ([gamboa2008 ["SCR_Peaks"], kim2004["SCR_Peaks"], neurokit ["SCR_

Peaks"]], eda_phasic)

<Figure

References
e Gamboa, H. (2008). Multi-modal behavioral biometrics based on hci and electrophysiology. PhD The-
sisUniversidade.
e Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring
of physiological signals. Medical and biological engineering and computing, 42(3), 419-427.
eda_phasic (eda_signal, sampling_rate=1000, method="highpass')
Decompose Electrodermal Activity (EDA) into Phasic and Tonic components.

Decompose the Electrodermal Activity (EDA) into two components, namely Phasic and Tonic, using different
methods including cvxEDA (Greco, 2016) or Biopac’s Acgknowledge algorithms.

Parameters
* eda_signal (Union[list, np.array, pd.Series]) — The raw EDA signal.

» sampling_rate (inf) — The sampling frequency of raw EDA signal (in Hz, i.e., sam-
ples/second). Defaults to 1000Hz.

9

* method (str) — The processing pipeline to apply. Can be one of “cvxEDA”, “median”,
“smoothmedian”, “highpass”, “biopac”, or “acqknowledge”.

Returns DataFrame — DataFrame containing the ‘Tonic’ and the ‘Phasic’ components as columns.

7.5. EDA 153

NeuroKit2, Release 0.0.39

See also:

eda_simulate (), eda_clean (), eda_peaks (), eda_process (), eda_plot ()

Examples

neurokit2 as nk

=

eda_signal nk.eda_simulate (duration-30, scr_number-5,

cvxEDA nk.eda_phasic (nk.standardize (eda_signal), method-'cvxeda')
smoothMedian nk.eda_phasic (nk.standardize (eda_signal), method='smoothmedian
)

highpass nk.eda_phasic (nk.standardize (eda_signal), method-'highpass')

data pd.concat ([cvxEDA.add_suffix('_cvxEDA'), smoothMedian.add_suffix('_
SmoothMedian'),
highpass.add_suffix('_Highpass')], axis=1)
data["EDA_Raw"] eda_signal
fig data.plot ()
fig

eda_signal nk.data ("bio_eventrelated_100hz") ["EDA"]

data nk.eda_phasic (nk.standardize (eda_signal), sampling_rate=100)
data["EDA_Raw"] eda_signal

fig nk.signal_plot (data, standardize-True)

fig

References

¢ cvxEDA: https://github.com/Iciti/cvxEDA.

* Greco, A., Valenza, G., & Scilingo, E. P. (2016). Evaluation of CDA and CvxEDA Models. In Ad-
vances in Electrodermal Activity Processing with Applications for Mental Health (pp. 35-43). Springer
International Publishing.

* Greco, A., Valenza, G., Lanata, A., Scilingo, E. P., & Citi, L. (2016). cvxEDA: A convex optimization
approach to electrodermal activity processing. IEEE Transactions on Biomedical Engineering, 63(4),
797-804.

eda_plot (eda_signals, sampling_rate=None)
Visualize electrodermal activity (EDA) data.
Parameters
* eda_signals (DataFrame) — DataFrame obtained from eda_process().

» sampling_rate (int) — The desired sampling rate (in Hz, i.e., samples/second). Defaults
to None.

Returns fig — Figure representing a plot of the processed EDA signals.

154 Chapter 7. Functions

https://github.com/lciti/cvxEDA

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

eda_signal nk.eda_simulate (duration-30, scr_number-5, drift-0.1, noise-0,

sampling_rate=250)
eda_signals, info nk.eda_process (eda_signal, sampling_rate=250)
fig nk.eda_plot (eda_signals)
fig

See also:
eda_process ()

eda_process (eda_signal, sampling_rate=1000, method="neurokit')
Process Electrodermal Activity (EDA).

Convenience function that automatically processes electrodermal activity (EDA) signal.
Parameters
» eda_signal (Union[list, np.array, pd.Series]) — The raw EDA signal.

» sampling_rate (inf) — The sampling frequency of rsp_signal (in Hz, i.e., sam-
ples/second).

» method (str) — The processing pipeline to apply. Can be one of “biosppy” or “neurokit”
(default).

Returns

* signals (DataFrame) — A DataFrame of same length as eda_signal containing the follow-
ing columns:

— "EDA_Raw”: the raw signal.
— "EDA_Clean”: the cleaned signal.

— "EDA_Tonic”: the tonic component of the signal, or the Tonic Skin Conductance
Level (SCL).

— "EDA_Phasic”: the phasic component of the signal, or the Phasic Skin Conductance
Response (SCR).

— ”SCR_Onsets”: the samples at which the onsets of the peaks occur, marked as “1”
in a list of zeros.

“193

— ”SCR_Peaks”: the samples at which the peaks occur, marked as in a list of zeros.

— ”SCR_Height”: the SCR amplitude of the signal including the Tonic component.
Note that cumulative effects of close- occurring SCRs might lead to an underestima-
tion of the amplitude.

— "SCR_Amplitude”: the SCR amplitude of the signal excluding the Tonic component.

— "SCR_RiseTime”: the time taken for SCR onset to reach peak amplitude within the
SCR.

— ”SCR_Recovery”: the samples at which SCR peaks recover (decline) to half ampli-
tude, marked as “1” in a list of zeros.

e info (dict) — A dictionary containing the information of each SCR peak (see
eda_findpeaks()).

7.5. EDA 155

NeuroKit2, Release 0.0.39

See also:

eda_simulate (), eda_clean (), eda_phasic(),eda_findpeaks (), eda_plot ()

Examples

neurokit2 as nk

C

eda_signal nk.eda_simulate (duration—-30, scr_number-5, drift-0.1, noise-0)

signals, info nk.eda_process (eda_signal, sampling_rate-1000)
fig nk.eda_plot (signals)
fig

eda_simulate (duration=10, length=None, sampling_rate=1000, noise=0.01, scr_number=1, drift=- 0.01,

random_state=None)
Simulate Electrodermal Activity (EDA) signal.

Generate an artificial (synthetic) EDA signal of a given duration and sampling rate.

Parameters

duration (int) — Desired recording length in seconds.

sampling_rate (int) — The desired sampling rate (in Hz, i.e., samples/second). Defaults
to 1000Hz.

length (inf) — The desired length of the signal (in samples). Defaults to None.

noise (float) — Noise level (amplitude of the laplace noise). Defaults to 0.01.

scr_number (int) — Desired number of skin conductance responses (SCRs), i.e., peaks.
Defaults to 1.

drift (float or list) — The slope of a linear drift of the signal. Defaults to -0.01.

random_state (int) — Seed for the random number generator. Defaults to None.

Returns array — Vector containing the EDA signal.

Examples

neurokit2 as nk
pandas as pd

eda nk.eda_simulate (duration-10, scr_number-3)
fig nk.signal_plot (eda)
fig

See also:

ecg_simulate (), rsp_simulate (), emg_simulate (), ppg_simulate ()

156 Chapter 7. Functions

NeuroKit2, Release 0.0.39

References

* Bach, D. R., Flandin, G., Friston, K. J., & Dolan, R. J. (2010). Modelling event-related skin conductance
responses. International Journal of Psychophysiology, 75(3), 349-356.

7.6 EMG

Submodule for NeuroKit.

emg_activation (emg_amplitude=None, emg_cleaned=None, sampling_rate=1000, method="threshold’,

threshold="default', duration_min="default’, **kwargs)
Detects onset in EMG signal based on the amplitude threshold.

Parameters

* emg_amplitude (array) — At least one EMG-related signal. Either the amplitude of
the EMG signal, obtained from emg_amplitude () for methods like ‘threshold’ or
‘mixture’), and / or the cleaned EMG signal (for methods like ‘pelt’).

* emg_cleaned (array) — At least one EMG-related signal. FEither the amplitude of the
EMG signal, obtained from emg_amplitude () for methods like ‘threshold’ or ‘mix-
ture’), and / or the cleaned EMG signal (for methods like ‘pelt’).

» sampling_rate (int) — The sampling frequency of emg_signal (in Hz, i.e., sam-
ples/second).

* method (str) — The algorithm used to discriminate between activity and baseline. Can be
one of ‘mixture’ (default) or ‘threshold’. If ‘mixture’, will use a Gaussian Mixture Model
to categorize between the two states. If ‘threshold’, will consider as activated all points
which amplitude is superior to the threshold.

* threshold (float) — If method is ‘mixture’, then it corresponds to the minimum proba-
bility required to be considered as activated (default to 0.33). If method is ‘threshold’,
then it corresponds to the minimum amplitude to detect as onset. Defaults to one tenth of
the standard deviation of emg_amplitude.

* duration_min (floar) — The minimum duration of a period of activity or non-activity in
seconds. If ‘default’, will be set to 0.05 (50 ms).

» kwargs (optional) — Other arguments.
Returns

* info (dict) — A dictionary containing additional information, in this case the samples at
which the onsets, offsets, and periods of activations of the EMG signal occur, accessible
with the key “EMG_Onsets”, “EMG_Offsets”, and “EMG_Activity” respectively.

* activity_signal (DataFrame) — A DataFrame of same length as the input signal in which
occurences of onsets, offsets, and activity (above the threshold) of the EMG signal are
marked as “1” in lists of zeros with the same length as emg_amplitude. Accessible with
the keys “EMG_Onsets”, “EMG_Offsets”, and “EMG_Activity” respectively.

See also:

emg_simulate (), emg_clean (), emg_amplitude (), emg_process (), emg_plot ()

7.6. EMG 157

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

Sule} nk.emg_simulate (duration=10, burst_number=3)
emg_cleaned nk.emg_clean (emg)

emg_amplitude nk.emg_amplitude (emg_cleaned)

activity, info nk.emg_activation (emg_amplitude-emg_amplitude, method
"threshold")

fig nk.events_plot ([info["EMG_Offsets"], info["EMG_Onsets"]], emg_cleaned)

fig

activity, info nk.emg_activation (emg_cleaned-emg_cleaned, method="pelt")
nk.signal_plot ([emg_cleaned, activity["EMG_Activity"]1])
fig

References
* BioSPPy: https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/emg.py

emg_amplitude (emg_cleaned)
Compute electromyography (EMG) amplitude.

Compute electromyography amplitude given the cleaned respiration signal, done by calculating the linear enve-
lope of the signal.

Parameters emg_cleaned (Union[list, np.array, pd.Series]) — The cleaned electromyography
channel as returned by emg_clean().

Returns array — A vector containing the electromyography amplitude.
See also:

emg_clean(),emg_rate (), emg_process (), emg_plot ()

Examples

neurokit2 as nk
pandas : pd

Sule} nk.emg_simulate (duration=10, sampling_ rate=1000, burst_number=3)

cleaned nk.emg_clean(emg, sampling_ rate=1000)

amplitude nk.emg_amplitude (cleaned)
fig pd.DataFrame ({"EMG": emg, "Amplitude": amplitude}) .plot (subplots=True)
fig

emg_analyze (data, sampling_rate=1000, method="auto')
Performs EMG analysis on either epochs (event-related analysis) or on longer periods of data such as resting-
state data.

Parameters

158 Chapter 7. Functions

https://github.com/PIA-Group/BioSPPy/blob/master/biosppy/signals/emg.py

NeuroKit2, Release 0.0.39

* data (Union/[dict, pd.DataFrame]) — A dictionary of epochs, containing one DataFrame
per epoch, usually obtained via epochs_create(), or a DataFrame containing all epochs,
usually obtained via epochs_to_df{). Can also take a DataFrame of processed signals
from a longer period of data, typically generated by emg_process() or bio_process(). Can
also take a dict containing sets of separate periods of data.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).
Defaults to 1000Hz.

* method (str) — Can be one of ‘event-related’ for event-related analysis on epochs, or
‘interval-related’ for analysis on longer periods of data. Defaults to ‘auto’ where the
right method will be chosen based on the mean duration of the data (‘event-related’ for
duration under 10s).

Returns DataFrame — A dataframe containing the analyzed EMG features. If event-related anal-
ysis is conducted, each epoch is indicated by the Label column. See emg_eventrelated() and
emg_intervalrelated() docstrings for details.

See also:

bio_process(), emg_process (), epochs_create(), emg_eventrelated(),
emg_intervalrelated()

Examples

neurokit?2
pandas a

emg nk.emg_simulate (duration=20, sampling_ rate=1000, burst_number=3)
emg_signals, info nk.emg_process (emg, sampling rate=1000)
epochs nk.epochs_create (emg_signals, events=[3000, 6000, 9000], sampling_

rate-=1000,
epochs_start=-0.1, epochs_end=1.9)

nk.emg_analyze (emg_signals, method="interval-related")

emg_clean (emg_signal, sampling_rate=1000)
Preprocess an electromyography (emg) signal.

Clean an EMG signal using a set of parameters, such as: in “BioSPPy <https:/github.com/PIA-
Group/BioSPPy/blob/e65da30f6379852ech98f8e2e0c9Ib4b5175416¢3/biosppy/signals/emg.py>>"_: fourth
order 100 Hz highpass Butterworth filter followed by a constant detrending.

Parameters
» emg_signal (Union[list, np.array, pd.Series]) — The raw EMG channel.

» sampling_rate (inf) — The sampling frequency of emg_signal (in Hz, i.e., sam-
ples/second). Defaults to 1000.

Returns array — Vector containing the cleaned EMG signal.
See also:

emg_amplitude (), emg_process (), emg_plot ()

7.6. EMG 159

NeuroKit2, Release 0.0.39

Examples

pandas as pd
neurokit2 as nk

Sule} nk.emg_simulate (duration=10, sampling_ rate=1000)

signals pd.DataFrame ({"EMG_Raw": emg, "EMG_Cleaned":nk.emg_clean (emg,
sampling_rate=1000) })

fig signals.plot ()

fig

emg_eventrelated (epochs, silent=False)
Performs event-related EMG analysis on epochs.

Parameters

* epochs (Union[dict, pd.DataFrame]) — A dict containing one DataFrame per event/trial,
usually obtained via epochs_create(), or a DataFrame containing all epochs, usually ob-
tained via epochs_to_df{().

« silent (bool) — If True, silence possible warnings.
Returns

DataFrame — A dataframe containing the analyzed EMG features for each epoch, with each
epoch indicated by the Label column (if not present, by the Index column). The analyzed
features consist of the following:

o "EMG_Activation”: indication of whether there is muscular activation follow-
ing the onset

of the event (1 if present, O if absent) and if so, its corresponding amplitude features
and the number of activations in each epoch. If there is no activation, nans are
displayed for the below features. - “EMG_Amplitude_Mean”: the mean amplitude
of the activity. - “EMG_Amplitude_Max”: the maximum amplitude of the activity. -
“EMG_Amplitude_Max_Time”: the time of maximum amplitude. - “EMG_Bursts”:
the number of activations, or bursts of activity, within each epoch.

See also:

emg_simulate (), emg_process(),events_find(), epochs_create()

Examples

neurokit2 as nk

Sule} nk.emg_simulate (duration=20, sampling_rate=1000, burst_number-=3)

emg_signals, info nk.emg_process (emg, sampling rate
epochs nk.epochs_create (emg_signals, events—|[3 C 6000, 9 C sampling_
rate=1000,
epochs_start=-0.1, epochs_end=1.9)
nk.emg_eventrelated (epochs)

emg_intervalrelated (data)
Performs EMG analysis on longer periods of data (typically > 10 seconds), such as resting-state data.

160 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Parameters data (Union/dict, pd.DataFrame]) — A DataFrame containing the different processed
signal(s) as different columns, typically generated by emg_process() or bio_process(). Can
also take a dict containing sets of separately processed DataFrames.

Returns DataFrame — A dataframe containing the analyzed EMG features. The analyzed features
consist of the following: - “EMG_Activation_N"": the number of bursts of muscular activity.
- “EMG_Amplitude_Mean”: the mean amplitude of the muscular activity.

See also:

bio_process (), emg_eventrelated()

Examples

neurokit2 as nk

Sule} nk.emg_simulate (duration=40, sampling_ rate=1000, burst_number=3)
emg_signals, info nk.emg_process (emg, sampling rate=1000)

nk.emg_intervalrelated (emg_signals)

epochs nk.epochs_create (emg_signals, events= [l 0000 sampling_rate=1000,
epochs_end=20)

nk.emg_intervalrelated (epochs)
emg_plot (emg_signals, sampling_rate=None)
Visualize electromyography (EMG) data.
Parameters
e emg_signals (DataFrame) — DataFrame obtained from emg_process().

» sampling_rate (inf) — The sampling frequency of the EMG (in Hz, i.e., samples/second).
Needs to be supplied if the data should be plotted over time in seconds. Otherwise the
data is plotted over samples. Defaults to None.

Returns fig — Figure representing a plot of the processed emg signals.

Examples

neurokit2 as nk

Shile] nk.emg_simulate (duration=10, sampling_rate=1000, burst_number-=3)

emg_signals, _ nk.emg_process (emg, sampling rate=1000)
fig nk.emg_plot (emg_signals)
fig

See also:
ecg_process ()

emg_process (emg_signal, sampling_rate=1000)
Process a electromyography (EMG) signal.

Convenience function that automatically processes an electromyography signal.

Parameters

7.6. EMG 161

NeuroKit2, Release 0.0.39

» emg_signal (Union[list, np.array, pd.Series]) — The raw electromyography channel.

» sampling_rate (inf) — The sampling frequency of emg_signal (in Hz, ie., sam-
ples/second).

Returns

* signals (DataFrame) — A DataFrame of same length as emg_signal containing the fol-
lowing columns: - “EMG_Raw”: the raw signal. - “EMG_Clean”: the cleaned sig-
nal. - “EMG_Amplitude”: the signal amplitude, or the activation level of the signal. -
“EMG_Activity”: the activity of the signal for which amplitude exceeds the threshold
specified, marked as “1” in a list of zeros. - “EMG_Onsets”: the onsets of the amplitude,
marked as “1” in a list of zeros. - “EMG_Offsets”: the offsets of the amplitude, marked
as “1” in a list of zeros.

* info (dict) — A dictionary containing the information of each amplitude onset, offset, and
peak activity (see emg_activation()).

See also:

emg_clean (), emg_amplitude (), emg_plot ()

Examples

neurokit2 as nk

Shile] nk.emg_simulate (duration=10, sampling_ rate=1000, burst_number=3)

signals, info nk.emg_process (emg, sampling rate=1000)
fig nk.emg_plot (signals)
fig

emg_simulate (duration=10, length=None, sampling_rate=1000, noise=0.01, burst_number=1,

burst_duration=1.0, random_state=42)
Simulate an EMG signal.

Generate an artificial (synthetic) EMG signal of a given duration and sampling rate.
Parameters
¢ duration (int) — Desired recording length in seconds.
» sampling_rate (inf) — The desired sampling rate (in Hz, i.e., samples/second).
* length (inf) — The desired length of the signal (in samples).
* noise (float) — Noise level (gaussian noise).
* burst_number (int) — Desired number of bursts of activity (active muscle periods).

* burst_duration (float or list) — Duration of the bursts. Can be a float (each burst will
have the same duration) or a list of durations for each bursts.

* random_state (inf) — Seed for the random number generator.

Returns array — Vector containing the EMG signal.

162 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk
pandas as pd

nk.emg_simulate (duration=10, burst_number=3)
nk.signal_plot (emg)

See also:

ecg_simulate (), rsp_simulate (), eda_simulate (), ppg_simulate ()

References

This function is based on this script.

7.7 EEG

Submodule for NeuroKit.

mne_channel_add (raw, channel, channel_type=None, channel_name=None, sync_index_raw=0,

sync_index_channel=0)
Add channel as array to MNE.

Add a channel to a mne’s Raw m/eeg file. It will basically synchronize the channel to the eeg data following a
particular index and add it.

Parameters

e raw (mne.io.Raw) — Raw EEG data from MNE.

channel (/ist or array) — The signal to be added.

channel_type (str) — Channel type. Currently supported fields are ‘ecg’, ‘bio’, ‘stim’,
‘eog’, ‘misc’, ‘seeg’, ‘ecog’, ‘mag’, ‘eeg’, ‘ref_meg’, ‘grad’, ‘emg’, ‘hbr’ or ‘hbo’.

channel_name (str) — Desired channel name.

sync_index_raw (inf or list) — An index (e.g., the onset of the same event marked in the
same signal), in the raw data, by which to align the two inputs. This can be used in case
the EEG data and the channel to add do not have the same onsets and must be aligned
through some common event.

sync_index_channel (int or list) — An index (e.g., the onset of the same event marked
in the same signal), in the channel to add, by which to align the two inputs. This can be
used in case the EEG data and the channel to add do not have the same onsets and must
be aligned through some common event.

Returns mne.io.Raw — Raw data in FIF format.

7.7. EEG 163

https://scientificallysound.org/2016/08/11/python-analysing-emg-signals-part-1/

NeuroKit2, Release 0.0.39

Example

neurokit2 as nk
mne

event_index_in_eeg

event_index_in_ecg

raw mne.io.read_raw_fif (mne.datasets.sample.data_path () '/MEG/sample/
sample_audvis_raw.fif',
preload-=Tr
ecg nk.ecg_simulate (length=170000)

nk.mne_channel_add(raw, ecg, sync_index_raw-event_index_in_eeg,
sync_index_channel-event_index_in_ecg, channel_ type

mne_channel_ extract (raw, what, name=None)
Channel array extraction from MNE.

Select one or several channels by name and returns them in a dataframe.
Parameters
* raw (mne.io.Raw) — Raw EEG data.

e what (str or list) — Can be ‘MEG’, which will extract all MEG channels, ‘EEG’, which
will extract all EEG channels, or ‘EOG’, which will extract all EOG channels (that is, if
channel names are named with prefixes of their type e.g., ‘EEG 001’ etc. or ‘EOG 061°).
Provide exact a single or a list of channel’s name(s) if not (e.g., [‘124°, ‘125°]).

* name (str or list) — Useful only when extracting one channel. Can also take a list of
names for renaming multiple channels, Otherwise, defaults to None.

Returns DataFrame — A DataFrame or Series containing the channel(s).

Example

neurokit2 as nk
mne

mne.io.read_raw_fif (mne.datasets.sample.data_path ()
'/MEG/sample/sample_audvis_raw.fif', preload=True)

raw_channel nk .mne_channel_extract (raw, what-["EEG 060", "EEG 055"], name- [
'060', '055'])

eeg_channels nk.mne_channel_extract (raw, "EEG")

eog_channels nk .mne_channel_extract (raw, what-'EOG', name-'EOG'")

164 Chapter 7. Functions

NeuroKit2, Release 0.0.39

7.8 Signal Processing

Submodule for NeuroKit.

signal_autocor (signal, lag=None, normalize=True)
Auto-correlation of a 1-dimensional sequences.

Parameters
« signal (Union[list, np.array, pd.Series]) — Vector of values.
* normalize (bool) — Normalize the autocorrelation output.

* lag (int) — Time lag. If specified, one value of autocorrelation between signal with its lag
self will be returned.

Returns r — The cross-correlation of the signal with itself at different time lags. Minimum time
lag is 0, maximum time lag is the length of the signal. Or a correlation value at a specific lag
if lag is not None.

Examples

neurokit2 as nk

X [, 2,

autocor nk.signal_autocor (x)

autocor

signal_binarize (signal, method="threshold', threshold="auto")
Binarize a continuous signal.

Convert a continuous signal into zeros and ones depending on a given threshold.
Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* method (str) — The algorithm used to discriminate between the two states. Can be one
of ‘mixture’ (default) or ‘threshold’. If ‘mixture’, will use a Gaussian Mixture Model
to categorize between the two states. If ‘threshold’, will consider as activated all points
which value is superior to the threshold.

¢ threshold (float) — If method is ‘mixture’, then it corresponds to the minimum probability
required to be considered as activated (if ‘auto’, then 0.5). If method is ‘threshold’, then
it corresponds to the minimum amplitude to detect as onset. If “auto”, takes the value
between the max and the min.

Returns list — A list or array depending on the type passed.

7.8. Signal Processing 165

NeuroKit2, Release 0.0.39

Examples

numpy np
pandas
neurokit2 as nk

signal np.cos (np.linspace (start=0, stop=20

binary nk.signal_binarize (signal)

fig pd.DataFrame ({"Raw": signal, "Binary": binary}) .plot ()
fig

signal_changepoints (signal, change="meanvar', penalty=None, show=False)
Change Point Detection.

Only the PELT method is implemented for now.

Parameters
« signal (Union/list, np.array, pd.Series]) — Vector of values.
 change (str) — Can be one of “meanvar” (default), “mean” or “var”.
* penalty (float) — The algorithm penalty. Default to np.log (len (signal)).
¢ show (bool) — Defaults to False.

Returns
* Array — Values indicating the samples at which the changepoints occur.

* Fig — Figure of plot of signal with markers of changepoints.

Examples

neurokit2 as nk

signal nk.emg_simulate (burst_number-3)
fig nk.signal_changepoints (signal, change="var", show=True)
fig

References
* Killick, R., Fearnhead, P., & Eckley, I. A. (2012). Optimal detection of changepoints with a linear

computational cost. Journal of the American Statistical Association, 107(500), 1590-1598.

signal_decompose (signal, method='emd', n_components=None, **kwargs)
Decompose a signal.

Signal decomposition into different sources using different methods, such as Empirical Mode Decomposition
(EMD) or Singular spectrum analysis (SSA)-based signal separation method.

The extracted components can then be recombined into meaningful sources using signal_recompose ().
Parameters
* signal (Union/list, np.array, pd.Series]) — Vector of values.

* method (str) — The decomposition method. Can be one of ‘emd’ or ‘ssa’.

166 Chapter 7. Functions

NeuroKit2, Release 0.0.39

* n_components (inf) — Number of components to extract. Only used for ‘ssa’ method. If
None, will default to 50.

o *¥kwargs — Other arguments passed to other functions.
Returns Array — Components of the decomposed signal.
See also:

signal_recompose ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10, frequency-=1, noise=0.01)
signal 3 nk.signal_simulate (duration=10, frequency=3, noise=0.01)

signal 3 np.linspace (0, 2, len(signal))

signal) nk.signal_simulate (duration=10, frequency .1, noise-0)

nk.signal_plot (signal)

components nk.signal_decompose (signal, method-="emd")
fig nk.signal_plot (components)
fig

components nk.signal_decompose (signal, method-"ss
fig nk.signal_plot (components)
fig

signal_detrend (signal, method='polynomial’, order=1, regularization=500, alpha=0.75, window=1.5,
stepsize=0.02)
Polynomial detrending of signal.

Apply a baseline (order = 0), linear (order = 1), or polynomial (order > 1) detrending to the signal (i.e., removing
a general trend). One can also use other methods, such as smoothness priors approach described by Tarvainen
(2002) or LOESS regression, but these scale badly for long signals.

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* method (str) — Can be one of ‘polynomial’ (default; traditional detrending of a given
order) or ‘tarvainen2002’ to use the smoothness priors approach described by Tarvainen
(2002) (mostly used in HRV analyses as a lowpass filter to remove complex trends),
‘loess’ for LOESS smoothing trend removal or ‘locreg’ for local linear regression (the
‘runline’ algorithm from chronux).

* order (inf) — Only used if method is ‘polynomial’. The order of the polynomial. 0, 1
or > 1 for a baseline (‘constant detrend’, i.e., remove only the mean), linear (remove the
linear trend) or polynomial detrending, respectively. Can also be ‘auto’, it which case it
will attempt to find the optimal order to minimize the RMSE.

* regularization (int) — Only used if method="tarvainen2002’. The regularization param-
eter (default to 500).

7.8. Signal Processing 167

NeuroKit2, Release 0.0.39

alpha (float) — Only used if method is ‘loess’. The parameter which controls the degree
of smoothing.

window (float) — Only used if method is ‘locreg’. The detrending ‘window’ should cor-
respond to the desired low frequency band to remove multiplied by the sampling rate

(for instance, 1.5+1000 will remove frequencies below 1.5Hz for a signal sampled at
1000Hz).

stepsize (float) — Only used if method is ‘locreg’. Simialrly to ‘window’, ‘stepsize’
should also be multiplied by the sampling rate.

Returns array — Vector containing the detrended signal.
See also:

signal_filter(),fit_loess|()

Examples

numpy as np
pandas as pd

neurokit2 as nk
matplotlib.pyplot as plt

signal nk.signal_simulate (frequency-[0.1, 2], amplitude=[2, 0.5], sampling_
rate 7wn)
signal signal 3 np.linspace (0, 6, num=len(signal)))

baseline nk.signal_detrend(signal, order-0)

linear nk.signal_detrend(signal, order=1)

quadratic nk.signal_detrend(signal, order-2)

cubic nk.signal_detrend(signal, order=3)

polyl0 nk.signal_detrend(signal, order=10)

tarvainen nk.signal_detrend(signal, method-='tarvainen2002'")

loess nk.signal_detrend(signal, method-'loess')

locreg nk.signal_detrend(signal, method="'locreg',

window=1.5+x100, stepsize

pd.DataFrame ({"Original signal": signal,
"Baseline": baseline,
"Linear": linear,
"Quadratic": quadratic,
UCuloie' g @uloie,
"Polynomial (10th)": polylO,
"Tarvainen": tarvainen,
"LOESS": loess,
"Local Regression": locreg}) .plot (subplots=True)

for subplot axes:
subplot.axhline (y=0, color='k', linestyle='—-")

168 Chapter 7. Functions

NeuroKit2, Release 0.0.39

References
 “Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2002). An advanced detrending method
with application to HRV analysis. IEEE Transactions on Biomedical Engineering, 49(2), 172-175. <https:

/lieeexplore.ieee.org/document/979357>" _

signal_distort (signal, sampling_rate=1000, noise_shape='"laplace’, noise_amplitude=0,
noise_frequency=100, powerline_amplitude=0, powerline_frequency=50, arti-
facts_amplitude=0, artifacts_frequency=100, artifacts_number=5, linear_drift=False,

random_state=None, silent=False)
Signal distortion.

Add noise of a given frequency, amplitude and shape to a signal.
Parameters

* signal (Union/list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).

* noise_shape (str) — The shape of the noise. Can be one of ‘laplace’ (default) or ‘gaus-
sian’.

* noise_amplitude (floar) — The amplitude of the noise (the scale of the random function,
relative to the standard deviation of the signal).

* noise_frequency (float) — The frequency of the noise (in Hz, i.e., samples/second).

» powerline_amplitude (float) — The amplitude of the powerline noise (relative to the stan-
dard deviation of the signal).

* powerline_frequency (float) — The frequency of the powerline noise (in Hz, i.e., sam-
ples/second).

* artifacts_amplitude (float) — The amplitude of the artifacts (relative to the standard de-
viation of the signal).

« artifacts_frequency (inf) — The frequency of the artifacts (in Hz, i.e., samples/second).

e artifacts_number (inr) — The number of artifact bursts. The bursts have a random dura-
tion between 1 and 10% of the signal duration.

¢ linear_drift (bool) — Whether or not to add linear drift to the signal.

* random_state (inf) — Seed for the random number generator. Keep it fixed for repro-
ducible results.

* silent (bool) — Whether or not to display warning messages.

Returns array — Vector containing the distorted signal.

7.8. Signal Processing 169

https://ieeexplore.ieee.org/document/979357
https://ieeexplore.ieee.org/document/979357

NeuroKit2, Release 0.0.39

Examples

numpy as
pandas
neurokit2 as nk

signal nk.signal_simulate (duration=10, frequency-0.5

noise pd.DataFrame ({"Freql00": nk.signal_distort (signal, noise_
frequency=200),
"Freg50": nk.signal_distort (signal, noise_frequency=50),
"FreqlO": nk.signal_distort (signal, noise_frequency=10),
"Freg5": nk.signal_distort (signal, noise_frequency-=5),
"Raw": signal}) .plot ()

artifacts pd.DataFrame ({"1Hz": nk.signal_distort (signal, noise_amplitude=0,
artifacts_frequency-=1,

artifacts_amplitude=0.5),
nk.signal_distort (signal, noise_amplitude=0,
artifacts_frequency-=5,
artifacts_amplitude=0.2
signal}) .plot ()
artifacts

signal_filter (signal, sampling_rate=1000, lowcut=None, highcut=None, method='butterworth', or-

der=2, window_size="default', powerline=50)
Filter a signal using ‘butterworth’, ‘fir’ or ‘savgol’ filters.

Apply a lowpass (if ‘highcut’ frequency is provided), highpass (if ‘lowcut’ frequency is provided) or bandpass
(if both are provided) filter to the signal.

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values. or “bandstop”.

* sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).
* lowcut (float) — Lower cutoff frequency in Hz. The default is None.
* highcut (floar) — Upper cutoff frequency in Hz. The default is None.

* method (str) — Can be one of ‘butterworth’, “fir’, ‘bessel’ or ‘savgol’. Note that for
Butterworth, the function uses the SOS method from scipy.signal.sosfiltfilt, recommended
for general purpose filtering. One can also specify “butterworth_ba’ for a more traditional
and legacy method (often implemented in other software).

* order (inf) — Only used if method is ‘butterworth’ or ‘savgol’. Order of the filter (default
is 2).

» window_size (int) — Only used if method is ‘savgol’. The length of the filter window
(i.e. the number of coefficients). Must be an odd integer. If ‘default’, will be set to the
sampling rate divided by 10 (101 if the sampling rate is 1000 Hz).

* powerline (int) — Only used if method is ‘powerline’. The powerline frequency (normally
50 Hz or 60 Hz).

See also:

170 Chapter 7. Functions

NeuroKit2, Release 0.0.39

signal_detrend (), signal_psd()

Returns array — Vector containing the filtered signal.

Examples

numpy
pandas
neurokit2 as nk

signal nk.signal_simulate (duration=10, frequency=0.5
signal nk.signal_simulate (duration=10, frequency-5)

figl pd.DataFrame ({"Raw": signal,
"Butter_2": nk.signal_filter (signal, highcut=3, method
'butterworth', order-2),
"Butter_2_ BA": nk.signal_filter(signal, highcut
method="'butterworth_ba', order=2),
"Butter_5": nk.signal_filter (signal, highcut=3,
'butterworth', order=5),
"Butter_5_BA": nk.signal_filter (signal, highcut
method-'"'butterworth_ba', order-5),
"Bessel 2": nk.signal_filter(signal, highcut=3, method
'bessel', order-2),
"Bessel 5": nk.signal_ filter(signal, highcut=3, method
'bessel', order-5),
"FIR": nk.signal_ filter(signal, highcut=3, method="'fir') }
) .plot (subplots=True)
figl

fig2 pd.DataFrame ({"Raw": signal,

"Butter_2": nk.signal_filter(signal, lowcut=2, method
'butterworth', order-2),
"Butter_2_ba": nk.signal_filter(signal, lowcut=2, method
'butterworth_ba', order=2),
"Butter_5": nk.signal_filter(signal, lowcut=2, method
'butterworth', order-5),
"Butter_5_BA": nk.signal_filter (signal, lowcut=2, method
'butterworth_ba', order=5),
"Bessel_2": nk.signal_filter(signal, lowcut-=2, method
'bessel', order-2),
"Bessel_5": nk.signal_filter(signal, lowcut=2, method
'bessel', order-5),
"FIR": nk.signal_ filter(signal, lowcut=2, method='fir')}
plot (subplots=True)
fig2

original nk.rsp_simulate (duration=30, method="breathmetrics", noise=0)
signal nk.signal_distort (original, noise_frequency-[0.1, 2, 10, 100], noise_

amplitude=1,
powerline_amplitude=1)

(continues on next page

7.8. Signal Processing 171

NeuroKit2, Release 0.0.39

(continued from previous page)

fig3 DataFrame ({"Raw": signal,
"Butter_2": nk.signal_filter (signal, lowcut=10
highcut
method-'butterworth',
order—2),
"Butter_2_BA": nk.signal_filter(signal, lowcut=1
highcut
method="butterworth_ba',
order=2),
"Butter_5": nk.signal_filter (signal, lowcut=10
highcut
method="'butterworth',
order—5),
"Butter_5_BA": nk.signal_filter(signal, lowcut
highcut
method-"butterworth_ba',
order=5),
"Bessel_2": nk.signal_filter (signal, lowcut=10
highcut
method-'bessel', order-2),
"Bessel_5": nk.signal_filter(signal, lowcut=10/60,
highcut
method-"'bessel', order-5),
"FIR": nk.signal_filter(signal, lowcut=10/60, highcut

method="fir"),
"Savgol": nk.signal_filter(signal, method='savgol')})

plot (subplots=True)
fig3

signal_findpeaks (signal, height_min=None, height_max=None, relative_height_min=None, rel-
ative_height_max=None, relative_mean=True, relative_median=False, rela-

tive_max=False)
Find peaks in a signal.

Locate peaks (local maxima) in a signal and their related characteristics, such as height (prominence), width and
distance with other peaks.

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* height_min (floar) — The minimum height (i.e., amplitude in terms of absolute values).
For example, "height_min=20"" will remove all peaks which height is smaller or equal to
20 (in the provided signal’s values).

* height_max (floar) — The maximum height (i.e., amplitude in terms of absolute values).

* relative_height_min (float) — The minimum height (i.e., amplitude) relative to the sam-
ple (see below). For example, relative_height_min=-2.96 will remove all
peaks which height lies below 2.96 standard deviations from the mean of the heights.

* relative_height_max (floar) — The maximum height (i.e., amplitude) relative to the sam-
ple (see below).

* relative_mean (bool) — If a relative threshold is specified, how should it be computed
(i.e., relative to what?). relative_mean=True will use Z-scores.

172 Chapter 7. Functions

NeuroKit2, Release 0.0.39

* relative_median (bool) — If a relative threshold is specified, how should it be computed
(i.e., relative to what?). Relative to median uses a more robust form of standardization
(see standardize ()).

* relative_max (bool) — If a relative threshold is specified, how should it be computed (i.e.,
relative to what?). Reelative to max will consider the maximum height as the reference.

Returns dict — Returns a dict itself containing 5 arrays: - ‘Peaks’ contains the peaks indices (as
relative to the given signal). For instance, the value 3 means that the third data point of
the signal is a peak. - ‘Distance’ contains, for each peak, the closest distance with another
peak. Note that these values will be recomputed after filtering to match the selected peaks.
- ‘Height’ contains the prominence of each peak. See scipy.signal peak_prominences(). -
‘Width’ contains the width of each peak. See scipy.signal peak_widths(). - ‘Onset’ contains
the onset, start (or left trough), of each peak. - ‘Offset’ contains the offset, end (or right
trough), of each peak.

Examples

numpy a

pandas
neurokit2 as nk
scipy.misc

signal nk.signal_simulate (duration=5)

info nk.signal_findpeaks (signal)

figl nk.events_plot ([info["Onsets"], info["Peaks"]], signal)
figl

signal nk.signal_distort (signal)

info nk.signal_findpeaks(signal, height_min-=1)
fig2 nk.events_plot (info["Peaks"], signal)
fig2

ecg scipy.misc.electrocardiogram()
signal ecg[0:1000]
infol nk.signal_findpeaks (signal, relative_height_min-=0)
info2 nk.signal_findpeaks (signal, relative_height_min=1)
fig3 nk.events_plot ([infol ["Peaks"], info2["Peaks"]], signal)
fig3
See also:
scipy.signal.find_peaks(), scipy.signal.peak_widths (), peak_prominences.

signal.peak_widths (), eda_findpeaks(), ecg_findpeaks (), rsp_findpeaks (),
signal_fixpeaks ()

signal_fixpeaks (peaks, sampling_rate=1000, iterative=True, show=False, interval_min=None, in-
terval_max=None, relative_interval_min=None, relative_interval_max=None, ro-

bust=False, method='Kubios")
Correct erroneous peak placements.

Identify and correct erroneous peak placements based on outliers in peak-to-peak differences (period).
Parameters

 peaks (list or array or DataFrame or Series or dict) — The samples at which the peaks
occur. If an array is passed in, it is assumed that it was obtained with signal_findpeaks().

7.8. Signal Processing 173

NeuroKit2, Release 0.0.39

If a DataFrame is passed in, it is assumed to be obtained with ecg_findpeaks() or
ppg_findpeaks() and to be of the same length as the input signal.

sampling_rate (inf) — The sampling frequency of the signal that contains the peaks (in
Hz, i.e., samples/second).

iterative (bool) — Whether or not to apply the artifact correction repeatedly (results in
superior artifact correction).

show (bool) — Whether or not to visualize artifacts and artifact thresholds.

interval_min (float) — The minimum interval between the peaks.

interval_max (float) — The maximum interval between the peaks.

relative_interval_min (float) — The minimum interval between the peaks as relative to
the sample (expressed in standard deviation from the mean).

relative_interval_max (floar) — The maximum interval between the peaks as relative to
the sample (expressed in standard deviation from the mean).

robust (bool) — Use a robust method of standardization (see standardize()) for the relative
thresholds.

method (str) — Either “Kubios” or “Neurokit”. “Kubios” uses the artifact detection and
correction described in Lipponen, J. A., & Tarvainen, M. P. (2019). Note that “Kubios”
is only meant for peaks in ECG or PPG. “neurokit” can be used with peaks in ECG, PPG,
or respiratory data.

Returns

 peaks_clean (array) — The corrected peak locations.

artifacts (dict) — Only if method="Kubios”. A dictionary containing the indices of arti-

CLINY3

facts, accessible with the keys “ectopic”, “missed”, “extra”, and “longshort”.
See also:

signal_findpeaks (),ecg_findpeaks (), ecg_peaks (), ppg_~findpeaks (), ppg_peaks()

Examples

neurokit2 as nk
numpy as np
matplotlib.pyplot as plt

=

Yele] nk.ecg_simulate (duration=240, noise=0.25, heart_rate=70

state=42)
rpeaks_uncorrected nk.ecg_findpeaks (ecqg)
artifacts, rpeaks_corrected nk.signal_fixpeaks (rpeaks_uncorrected,
iterative=True,
show-True, method "Kubios")
rate_corrected nk.signal_rate (rpeaks_corrected, desired_length-len (ecqg))
rate_uncorrected nk.signal_rate (rpeaks_uncorrected, desired_length=len (ecqg))

fig, ax plt.subplots ()

ax.plot (rate_uncorrected, label="heart rate without artifact correction")
ax.plot (rate_corrected, label="heart rate with artifact correction")
ax.legend(loc="upper right")

(continues on next page

174 Chapter 7. Functions

NeuroKit2, Release 0.0.39

(continued from previous page)

signal nk.signal_simulate (duration=4, sampling rate=1000, frequency-1)
peaks_true nk.signal_findpeaks (signal) ["Peaks"]
peaks np.delete (peaks_true, [11])

signal nk.signal_simulate (duration=20, sampling rate=1000, frequency=1)
peaks_true nk.signal_findpeaks (signal) ["Peaks"]

peaks np.delete (peaks_true, [5, 15])

peaks np.sort (np.append (peaks, [1350, 11350, 18350]))

peaks_corrected nk.signal_fixpeaks (peaks-peaks, interval min-0.5, interval_
max=1.5, method="neurokit")

fig nk.events_plot ([peaks 50, peaks_corrected], signal)
fig

References
* Lipponen, J. A., & Tarvainen, M. P. (2019). A robust algorithm for heart rate variability time

series artefact correction using novel beat classification. Journal of medical engineering & technology, 43(3),
173-181. 10.1080/03091902.2019.1640306

signal_formatpeaks (info, desired_length, peak_indices=None)
Transforms an peak-info dict to a signal of given length.

signal_interpolate (x_values, y_values, x_new=None, method='quadratic')
Interpolate a signal.

Interpolate a signal using different methods.
Parameters

» x_values (Union[list, np.array, pd.Series]) — The samples corresponding to the values to
be interpolated.

* y_values (Union[list, np.array, pd.Series]) — The values to be interpolated.

* x_new (Union[list, np.array, pd.Series] or int) — The samples at which to interpolate the
y_values. Samples before the first value in x_values or after the last value in x_values will
be extrapolated. If an integer is passed, nex_x will be considered as the desired length of
the interpolated signal between the first and the last values of x_values. No extrapolation
will be done for values before or after the first and the last valus of x_values.

* method (str) — Method of interpolation. Can be ‘linear’, ‘nearest’, ‘zero’, ‘slinear’,
‘quadratic’, ‘cubic’, ‘previous’, ‘next’ or ‘monotone_cubic’. ‘zero’, ‘slinear’, ‘quadratic’
and ‘cubic’ refer to a spline interpolation of zeroth, first, second or third order; ‘pre-
vious’ and ‘next’ simply return the previous or next value of the point) or as an in-
teger specifying the order of the spline interpolator to use. See https://docs.scipy.org/
doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html for details on the
‘monotone_cubic’ method.

Returns array — Vector of interpolated samples.

7.8. Signal Processing 175

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html

NeuroKit2, Release 0.0.39

Examples

numpy as np
neurokit2 as nk
matplotlib.pyplot as plt

signal nk.signal_simulate (duration=1, sampling rate=10)

interpolation_methods ["zero", "linear", "quadratic", "cubic", 5, "nearest",
"monotone_cubic"]

X_values np.linspace (0, 1, num=10)

X_new np.linspace (0, 1, num=1000)

fig, ax plt.subplots ()
ax.scatter (x_values, signal, label="original datapoints", zorder=3)
for im interpolation_methods:
signal_interpolated nk.signal_interpolate (x_values, signal, x_new-x_new,
method—im)
ax.plot (x_new, signal_interpolated, label=im)
ax.legend (loc="upper left")

signal_merge (signall, signal2, timel=[0, 10], time2=[0, 10])
Arbitrary addition of two signals with different time ranges.

Parameters

o signall (Union[list, np.array, pd.Series]) — The first signal (i.e., a time series)s in the
form of a vector of values.

* signal2 (Union/list, np.array, pd.Series]) — The second signal (i.e., a time series)s in the
form of a vector of values.

* timel (/ist) — Lists containing two numeric values corresponding to the beginning and
end of signall.

« time2 (l/ist) — Same as above, but for signal2.

Returns array — Vector containing the sum of the two signals.

Examples

numpy
pandas jole!
neurokit2 as nk

signall np.cos (np.linspace (start=0, stop=10, num=100))
signal?2 np.cos (np.linspace (start=0, stop=20, num=100))

signal nk.signal_merge (signall, signal2, timel-[0, 10],
nk.signal_plot (signal)

signal_period (peaks, sampling_rate=1000, desired_length=None, interpola-

_ tion_method="monotone_cubic")
Calculate signal period from a series of peaks.

Parameters

176 Chapter 7. Functions

NeuroKit2, Release 0.0.39

peaks (Union[list, np.array, pd.DataFrame, pd.Series, dict]) — The samples at which
the peaks occur. If an array is passed in, it is assumed that it was obtained with sig-
nal_findpeaks(). If a DataFrame is passed in, it is assumed it is of the same length as the
input signal in which occurrences of R-peaks are marked as “1”, with such containers
obtained with e.g., ecg_findpeaks() or rsp_findpeaks().

sampling_rate (inf) — The sampling frequency of the signal that contains peaks (in Hz,
i.e., samples/second). Defaults to 1000.

desired_length (int) — If left at the default None, the returned period will have the same
number of elements as peaks. If set to a value larger than the sample at which the last
peak occurs in the signal (i.e., peaks[-1]), the returned period will be interpolated between
peaks over desired_length samples. To interpolate the period over the entire duration of
the signal, set desired_length to the number of samples in the signal. Cannot be smaller
than or equal to the sample at which the last peak occurs in the signal. Defaults to None.

interpolation_method (str) — Method used to interpolate the rate between peaks. See
signal_interpolate(). ‘monotone_cubic’ is chosen as the default interpolation method
since it ensures monotone interpolation between data points (i.e., it prevents physiolog-
ically implausible “overshoots” or “undershoots” in the y-direction). In contrast, the
widely used cubic spline interpolation does not ensure monotonicity.

Returns array — A vector containing the period.
See also:

signal_findpeaks (), signal_fixpeaks(),signal_plot ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10, sampling_rate 00, frequency=1)
info nk.signal_findpeaks (signal)

period nk.signal_period(peaks=info["Peaks"], desired_length-len(signal))
nk.signal_plot (period)

signal_phase (signal, method="radians’)
Compute the phase of the signal.

The real phase has the property to rotate uniformly, leading to a uniform distribution density. The prophase
typically doesn’t fulfill this property. The following functions applies a nonlinear transformation to the phase
signal that makes its distribution exactly uniform. If a binary vector is provided (containing 2 unique values),
the function will compute the phase of completion of each phase as denoted by each value.

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* method (str) — The values in which the phase is expressed. Can be ‘radians’ (default),
‘degrees’ (for values between 0 and 360) or ‘percents’ (for values between 0 and 1).

See also:

signal_filter(),signal_zerocrossings (), signal_findpeaks ()

Returns array — A vector containing the phase of the signal, between 0 and 2*pi.

7.8. Signal Processing 177

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10)
phase nk.signal_ phase(signal)
nk.signal_plot ([signal, phase])

rsp nk.rsp_simulate (duration=30)
phase nk.signal_phase (rsp, method="degrees")
nk.signal_plot ([rsp, phase])

signal nk.signal_binarize (nk.signal_simulate (duration=10))
phase nk.signal_phase (signal, method="percents")
nk.signal_plot ([signal, phase])

signal_plot (signal, sampling_rate=None, subplots=False, standardize=False, labels=None, **kwargs)
Plot signal with events as vertical lines.

Parameters
* signal (array or DataFrame) — Signal array (can be a dataframe with many signals).

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).
Needs to be supplied if the data should be plotted over time in seconds. Otherwise the
data is plotted over samples. Defaults to None.

* subplots (bool) — If True, each signal is plotted in a subplot.

« standardize (bool) — If True, all signals will have the same scale (useful for visualisa-
tion).

¢ labels (str or list) — Defaults to None.

» **kwargs (optional) — Arguments passed to matplotlib plotting.

Examples

numpy as np
pandas pd
neurokit2 as nk

signal nk.signal_simulate (duration=10, sampling_rate=10
nk.signal_plot (signal, labels='signall', sampling_rate=1000, color="red")

data pd.DataFrame ({"Signal2": np.cos(np.linspace(start=0, stop
num=1000)),
"Signal3": np.sin(np.linspace (start=0, stop=20,

"Signald4": nk.signal_binarize (np.cos (np.linspace (start=0,
stop=40, num=1000)))})
nk.signal_plot (data, labels=['signal_1', 'signal_2', 'signal_3'],
subplots=Fa)
nk.signal_plot ([signal, data], standardize=True)

signal_power (signal, frequency_band, sampling_rate=1000, continuous=False, show=False, **kwargs)
Compute the power of a signal in a given frequency band.

178 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* frequency_band (tuple or list) — Tuple or list of tuples indicating the range of frequencies
to compute the power in.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).
* continuous (bool) — Compute instant frequency, or continuous power.
* show (bool) — If True, will return a Poincaré plot. Defaults to False.
o *¥kwargs — Keyword arguments to be passed to signal_psd().
See also:
signal_ filter(),signal_psd()

Returns pd.DataFrame — A DataFrame containing the Power Spectrum values and a plot if show
is True.

Examples

neurokit2 as nk
numpy as np

signal nk.signal_simulate (frequency=5) 0.5+nk.signal__
simulate (frequency=20)

power_plot nk.signal_power (signal, frequency_band=[(18,
method="welch", show=True)

power_plot

signal np.concatenate ((nk.ecg_simulate (duration=30, heart_rate=75), nk.ecg_
simulate (duration—-30, heart_rate-85)))

power nk.signal_power (signal, frequency_band=[(72/60, 78/60), (82
60)], continuous=True)

processed, _ nk.ecg_process (signal)
power ["ECG_Rate"] processed["ECG_Rate"]
nk.signal_plot (power, standardize=True)

signal nk.data ("bio_eventrelated_100hz") ["ECG"]

power nk.signal_power (signal, sampling_rate-=100, frequency_band
15), (0.15, 0.4)], continuous=True)

processed, _ nk.ecg_process (signal, sampling_rate=100)

power ["ECG_Rate"] processed["ECG_Rate"]

nk.signal_ plot (power, standardize=True)

signal_psd (signal, sampling_rate=1000, method="welch', show=True, min_frequency=0,
max_frequency=inf, window=None, ar_order=15, order_criteria="KIC', or-
der_corrected=True, burg_norm=True)
Compute the Power Spectral Density (PSD).

Parameters

7.8. Signal Processing 179

NeuroKit2, Release 0.0.39

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).

* method (str) — Either ‘multitapers’ (default; requires the ‘mne’ package), or ‘welch’
(requires the ‘scipy’ package).

* show (bool) — If True, will return a plot. If False, will return the density values that can
be plotted externally.

* min_frequency (float) — The minimum frequency.
* max_frequency (float) — The maximum frequency.

» window (inf) — Length of each window in seconds (for Welch method). If None (default),
window will be automatically calculated to capture at least 2 cycles of min_frequency. If
the length of recording does not allow the formal, window will be default to half of the
length of recording.

 ar_order (int) — The order of autoregression (for AR methods e.g. Burg).

* order_criteria (str) — The criteria to automatically select order in parametric PSD (for
AR methods e.g. Burg).

 order_corrected (bool) — Specify for AIC and KIC order_criteria. If unsure which
method to use to choose the order, rely on the default of corrected KIC.

* bug_norm (bool) — Normalization for Burg method.
See also:
signal_filter (), mne.time_frequency.psd_array_multitaper(), scipy.signal.

welch ()

Returns pd.DataFrame — A DataFrame containing the Power Spectrum values and a plot if show
is True.

Examples

neurokit2 as nk

signal nk.signal_simulate (frequency-5) 0.5+nk.signal_
simulate (frequency=20)

figl nk.signal_psd(signal, method-"multitapers")

figl

fig2 nk.signal_psd(signal, method="welch", min_frequency=1)
fig2

fig3 nk.signal_psd(signal, method="burg", min_frequency-1)

data nk.signal_psd(signal, method="multitapers", max_frequency
show-False)

fig4 data.plot (x="Frequency", y="Power")

fig4

data nk.signal_psd(signal, method="welch", max_frequency
min_frequency=1)

figh data.plot (x="Frequency", y="Power")

figh

180 Chapter 7. Functions

NeuroKit2, Release 0.0.39

signal_rate (peaks, sampling_rate=1000, desired_length=None, interpola-

tion_method="monotone_cubic")
Calculate signal rate from a series of peaks.

This function can also be called either via ecg_rate (), "ppg_rate () or rsp_rate () (aliases provided
for consistency).

Parameters

» peaks (Union[list, np.array, pd.DataFrame, pd.Series, dict]) — The samples at which
the peaks occur. If an array is passed in, it is assumed that it was obtained with sig-
nal_findpeaks(). If a DataFrame is passed in, it is assumed it is of the same length as the
input signal in which occurrences of R-peaks are marked as “1”, with such containers
obtained with e.g., ecg_findpeaks() or rsp_findpeaks().

» sampling_rate (inf) — The sampling frequency of the signal that contains peaks (in Hz,
i.e., samples/second). Defaults to 1000.

¢ desired_length (int) — If left at the default None, the returned rated will have the same
number of elements as peaks. If set to a value larger than the sample at which the last
peak occurs in the signal (i.e., peaks[-1]), the returned rate will be interpolated between
peaks over desired_length samples. To interpolate the rate over the entire duration of the
signal, set desired_length to the number of samples in the signal. Cannot be smaller than
or equal to the sample at which the last peak occurs in the signal. Defaults to None.

* interpolation_method (str) — Method used to interpolate the rate between peaks. See
signal_interpolate(). ‘monotone_cubic’ is chosen as the default interpolation method
since it ensures monotone interpolation between data points (i.e., it prevents physiolog-
ically implausible “overshoots” or “undershoots” in the y-direction). In contrast, the
widely used cubic spline interpolation does not ensure monotonicity.

Returns array — A vector containing the rate.
See also:

signal_findpeaks (), signal_fixpeaks(),signal_plot ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10, sampling_rate=1000, frequency-1)
info nk.signal_ findpeaks (signal)

rate nk.signal_rate (peaks=info["Peaks"], desired_length-=len(signal))
fig nk.signal_plot (rate)
fig

signal_recompose (components, method="wcorr', threshold=0.5, keep_sd=None, **kwargs)
Combine signal sources after decomposition.

Combine and reconstruct meaningful signal sources after signal decomposition.
Parameters
* components (array) — Array of components obtained via signal_decompose ().
* method (str) — The decomposition method. Can be one of ‘wcorr’.

¢ threshold (float) — The threshold used to group components together.

7.8. Signal Processing 181

NeuroKit2, Release 0.0.39

* keep_sd (float) — If a float is specified, will only keep the reconstructed components
that are superior or equal to that percentage of the max standard deviaiton (SD) of the
components. For instance, keep_sd=0.01 will remove all components with SD is
lower that 1% of the max SD. This can be used to filter out noise.

o *¥kwargs — Other arguments to override for instance metric="'chebyshev'.

Returns Array — Components of the recomposed components.

Examples

neurokit2 as nk
signal nk.signal_simulate (duration=10, frequency=1, noise=0.01)
signal 3 nk.signal_simulate (duration=10, frequency=3, noise=0.01)

signal 3 np.linspace (0, 2, len(signal))
signal 0. nk.signal_simulate (duration=10, frequency-0.1, noise=0)

components nk.signal_decompose (signal, method='emd"')

recomposed nk.signal_recompose (components, method='wcorr', threshold=0.90)
fig nk.signal_ plot (components)
fig

signal_resample (signal, desired_length=None, sampling_rate=None, desired_sampling_rate=None,

method='"interpolation’)
Resample a continuous signal to a different length or sampling rate.

Up- or down-sample a signal. The user can specify either a desired length for the vector, or input the orig-
inal sampling rate and the desired sampling rate. See https://github.com/neuropsychology/NeuroKit/scripts/
resampling.ipynb for a comparison of the methods.

Parameters

signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

desired_length (inf) — The desired length of the signal.

sampling_rate (int) — The original sampling frequency (in Hz, i.e., samples/second).

desired_sampling_rate (inf) — The desired (output) sampling frequency (in Hz, i.e., sam-
ples/second).

method (str) — Can be ‘interpolation’ (see scipy.ndimage.zoom()), ‘numpy’ for numpy’s
interpolation (see numpy.interp()),pandas’ for Pandas’ time series resampling, ‘poly’
(see scipy.signal.resample_poly()) or ‘FFT’ (see scipy.signal.resample()) for the Fourier
method. FFT is the most accurate (if the signal is periodic), but becomes exponentially
slower as the signal length increases. In contrast, ‘interpolation’ is the fastest, followed
by ‘numpy’, ‘poly’ and ‘pandas’.

Returns array — Vector containing resampled signal values.

182 Chapter 7. Functions

https://github.com/neuropsychology/NeuroKit/scripts/resampling.ipynb
https://github.com/neuropsychology/NeuroKit/scripts/resampling.ipynb

NeuroKit2, Release 0.0.39

Examples

numpy as np
pandas as pd
neurokit2 as nk

signal np.cos (np.linspace (start=0, stop=20, num=100))
>>>

downsampled_interpolation nk.signal_ resample (signal, method="interpolation",
sampling_rate=1000, desired_
sampling_rate=500)
downsampled_fft nk.signal_resample (signal, method="FFT",
sampling_rate=1000, desired_sampling__
rate=500)
downsampled_poly nk.signal_resample (signal, method="poly",
sampling_rate=1000, desired_sampling__
rate=500)
downsampled_numpy nk.signal_ resample (signal, method="numpy",
sampling_rate=1000, desired_sampling_
rate=500)
downsampled_pandas nk.signal_resample (signal, method="pandas",
sampling_rate=1000, desired_sampling_
rate—-500)
>>>

upsampled_interpolation nk.signal_resample (downsampled_interpolation,
method="interpolation",
sampling_rate=500, desired_
sampling_rate=1000)
upsampled_fft nk.signal_resample (downsampled_fft, method="FFT",
sampling_rate=500, desired_sampling__
rate=1000)
upsampled_poly nk.signal_ resample (downsampled_poly, method="poly",
sampling_rate-500, desired_sampling
rate=1000)
upsampled_numpy nk.signal_resample (downsampled_numpy, method-"numpy",
sampling_rate=500, desired_sampling__
rate=1000)
upsampled_pandas nk.signal_resample (downsampled_pandas, method-"pandas",
sampling rate=500, desired_sampling__
rate=1000)
>>>

fig pd.DataFrame ({"Original": signal,
"Interpolation": upsampled_interpolation,
"FFT": upsampled_fft,
"Poly": upsampled_poly,
"Numpy": upsampled_numpy,
"Pandas": upsampled_pandas}) .plot (style="'.
fig

timeit nk.signal_resample (signal, method="interpolation",
sampling_rate=1000, desired_sampling_rate
timeit nk.signal_resample (signal, method="FFT",
sampling_rate=1000, desired_sampling_rate
(continues on next page)

7.8. Signal Processing 183

NeuroKit2, Release 0.0.39

(continued from previous page)

timeit nk.signal_resample (signal, method="poly",
sampling_rate=1000, desired_sampling_ rate
timeit nk.signal_resample (signal, method="numpy",

sampling_rate-1I , desired_sampling_rate
timeit nk.signal_resample (signal, method-"pandas",
sampling_rate=1000, desired_sampling_ rate

See also:
scipy.signal.resample_poly (), scipy.signal.resample (), scipy.ndimage.zoom/()

signal_simulate (duration=10, sampling_rate=1000, frequency=1, amplitude=0.5, noise=0,

) _ silent=False)
Simulate a continuous signal.

Parameters

duration (float) — Desired length of duration (s).

sampling_rate (int) — The desired sampling rate (in Hz, i.e., samples/second).

frequency (float or list) — Oscillatory frequency of the signal (in Hz, i.e., oscillations per
second).

amplitude (float or list) — Amplitude of the oscillations.

noise (float) — Noise level (amplitude of the laplace noise).

silent (bool) — If False (default), might print warnings if impossible frequencies are
queried.

Returns array — The simulated signal.

Examples

numpy as
pandas jelel
neurokit2 as nk

=

fig pd.DataFrame ({"1Hz": nk.signal_simulate (duration-5, frequency-1),

"2Hz": nk.signal_simulate (duration=5, frequency-2),
"Multi": nk.signal_simulate (duration=5, frequency-[0.5,
3], amplitude=[0.5, 0.2])1}) .plot ()
fig

signal_smooth (signal, method='convolution', kernel="boxzen', size=10, alpha=0.1)
Signal smoothing.

Signal smoothing can be achieved using either the convolution of a filter kernel with the input signal to compute
the smoothed signal (Smith, 1997) or a LOESS regression.

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

¢ method (str) — Can be one of ‘convolution’ (default) or ‘loess’.

* kernel (Union[str, np.array]) — Only used if method is ‘convolution’. Type of kernel
to use; if array, use directly as the kernel. Can be one of ‘median’, ‘boxzen’, ‘box-
car’, ‘triang’, ‘blackman’, ‘hamming’, ‘hann’, ‘bartlett’, ‘flattop’, ‘parzen’, ‘bohman’,

184 Chapter 7. Functions

NeuroKit2, Release 0.0.39

‘blackmanharris’, ‘nuttall’, ‘barthann’, ‘kaiser’ (needs beta), ‘gaussian’ (needs std), ‘gen-
eral_gaussian’ (needs power, width), ‘slepian’ (needs width) or ‘chebwin’ (needs attenu-
ation).

* size (int) — Only used if method is ‘convolution’. Size of the kernel; ignored if kernel is
an array.

* alpha (float) — Only used if method is ‘loess’. The parameter which controls the degree
of smoothing.

Returns array — Smoothed signal.
See also:

fit_loess ()

Examples

numpy as np
pandas jolel
neurokit2 as nk

signal np.cos (np.linspace (start=0, stop=10, num=1000))
distorted nk.signal_distort (signal, noise_amplitude=[0.3,
noise_frequency=[5, 1C

size len(signal) /100
signals pd.DataFrame ({"Raw": distorted,
"Median": nk.signal_smooth (distorted, kernel='median',
size-size 1),
"BoxZen": nk.signal_smooth (distorted, kernel='boxzen',
size—-size),
"Triang": nk.signal_smooth (distorted, kernel='triang',
size-size),
"Blackman": nk.signal_smooth (distorted, kernel
'blackman', size-size),
"Loess_01": nk.signal_smooth (distorted, method="'loess
', alpha=0.1),
"Loess_02": nk.signal_smooth (distorted, method="'loess
', alpha=0.2),
"Loess_05": nk.signal_smooth (distorted, method="'loess
', alpha=0.5)1})
fig signals.plot ()
fig_magnify signals[50:150] .plot ()
fig_magnify

References
* Smith, S. W. (1997). The scientist and engineer’s guide to digital signal processing.

signal_synchrony (signall, signal2, method="hilbert', window_size=50)
Compute the synchrony (coupling) between two signals.

Compute a continuous index of coupling between two signals either using the ‘Hilbert’ method to get the in-
stantaneous phase synchrony, or using rolling window correlation.

7.8. Signal Processing 185

NeuroKit2, Release 0.0.39

The instantaneous phase synchrony measures the phase similarities between signals at each timepoint. The
phase refers to the angle of the signal, calculated through the hilbert transform, when it is resonating between
-pi to pi degrees. When two signals line up in phase their angular difference becomes zero.

For less clean signals, windowed correlations are widely used because of their simplicity, and can be a good a
robust approximation of synchrony between two signals. The limitation is the need to select a window.

Parameters
« signall (Union/list, np.array, pd.Series]) — Time series in the form of a vector of values.
* signal2 (Union[list, np.array, pd.Series]) — Time series in the form of a vector of values.
¢ method (str) — The method to use. Can be one of ‘hilbert’ or ‘correlation’.

* window_size (int) — Only used if method="correlation’. The number of samples to use
for rolling correlation.

See also:

signal_filter(),signal_zerocrossings (), signal_findpeaks ()

Returns array — A vector containing the phase of the signal, between 0 and 2*pi.

Examples

neurokit2 as nk

signall nk.signal_simulate (duration=10, frequency-=1)
signal?2 nk.signal_simulate (duration=10, frequency-1.5)

coupling_h nk.signal_synchrony(signall, signal2, method="hilbert")
coupling_c nk.signal_synchrony(signall, signal2, method="correlation",
window_size=1000/2)

fig nk.signal plot ([signall, signal2, coupling_h, coupling_c])
fig

References

* http://jinhyuncheong.com/jekyll/update/2017/12/10/Timeseries_synchrony_tutorial_and_simulations.
html

signal_zerocrossings (signal, direction="'both’)
Locate the indices where the signal crosses zero.
Note that when the signal crosses zero between two points, the first index is returned.
Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

LLINT3

* direction (str) — Direction in which the signal crosses zero, can be “positive”, “negative”
or “both” (default).

Returns array — Vector containing the indices of zero crossings.

186 Chapter 7. Functions

http://jinhyuncheong.com/jekyll/update/2017/12/10/Timeseries_synchrony_tutorial_and_simulations.html
http://jinhyuncheong.com/jekyll/update/2017/12/10/Timeseries_synchrony_tutorial_and_simulations.html

NeuroKit2, Release 0.0.39

Examples

numpy as np
neurokit2 as nk

signal np.cos (np.linspace (start=0, stop=15, num=1000))
zZeros nk.signal_zerocrossings (signal)

fig nk.events_plot (zeros, signal)

fig

up nk.signal_zerocrossings (signal, direction='up')
down nk.signal_zerocrossings (signal, direction-='down')
fig nk.events_plot ([up, down], signal)

fig

7.9 Events

Submodule for NeuroKit.

events_find (event_channel, threshold='auto', threshold_keep='above', start_at=0, end_at=None,
duration_min=1, duration_max=None, inter_min=0, discard_first=0, discard_last=0,

. event_labe{szNane,' event_qonditionszNone)
Find and select events in a continuous signal (e.g., from a photosensor).

Parameters
* event_channel (array or list) — The channel containing the events.

¢ threshold (str or float) — The threshold value by which to select the events. If “auto”,
takes the value between the max and the min.

¢ threshold_keep (str) — “above” or “below”, define the events as above or under the
threshold. For photosensors, a white screen corresponds usually to higher values. There-
fore, if your events are signaled by a black colour, events values are the lower ones, and
you should set the cut to “below”.

* start_at (int) — Keep events which onset is after a particular time point.
* end_at (inr) — Keep events which onset is before a particular time point.

¢ duration_min (inf) — The minimum duration of an event to be considered as such (in
time points).

¢ duration_max (int) — The maximum duration of an event to be considered as such (in
time points).

* inter_min (int) — The minimum duration after an event for the subsequent event to be
considered as such (in time points). Useful when spurious consecutive events are created
due to very high sampling rate.

* discard_first (int) — Discard first or last n events. Useful if the experiment starts with
some spurious events. If discard_first=0, no first event is removed.

¢ discard_last (int) — Discard first or last n events. Useful if the experiment ends with
some spurious events. If discard_last=0, no last event is removed.

* event_labels (/ist) — A list containing unique event identifiers. If None, will use the event
index number.

7.9. Events 187

NeuroKit2, Release 0.0.39

* event_conditions (/isf) — An optional list containing, for each event, for example the trial
category, group or experimental conditions.

Returns dict — Dict containing 3 or 4 arrays, ‘onset’ for event onsets, ‘duration’ for event durations,
‘label” for the event identifiers and the optional ‘conditions’ passed to event_conditions.

See also:

events_plot (), events_to_mne ()

Example

numpy as np
pandas as pd
neurokit2 as nk

signal nk.signal_simulate (duration=4)
events nk.events_find(signal)
events

array(...),

nk.events_plot (events, signal)
<Figure >

events_plot (events, signal=None, show=True, color="red', linestyle="--")
Plot events in signal.

Parameters

« events (/ist or ndarray or dict) — Events onset location. Can also be a list of lists, in which
case it will mark them with different colors. If a dict is passed (e.g., from ‘events_find()’),
will select only the ‘onset’ list.

« signal (array or DataFrame) — Signal array (can be a dataframe with many signals).

e show (bool) — If True, will return a plot. If False, will return a DataFrame that can be
plotted externally.

¢ color (str) — Argument passed to matplotlib plotting.
* linestyle (str) — Argument passed to matplotlib plotting.
Returns fig — Figure representing a plot of the signal and the event markers.
See also:

events_find()

188 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

numpy
pandas jole!
neurokit2 as nk

fig nk.events_plot ([1, 3, 5])
fig

signal nk.signal_simulate (duration=4)
events nk.events_find(signal)

figl nk.events_plot (events, signal)
figl

eventsl events["onset"]

events?2 np.linspace (0, len(signal), 8)

fig2 nk.events_plot ([eventsl, events2], signal)
fig2

events nk.events_find(signal, event_conditions-=["A", "B", "A", "B"])
fig3 nk.events_plot (events, signal)
fig3

signal nk.signal_simulate (duration=20)
events nk.events_find(signal)

events [[1i] for 1 events['onset']]
fig4d nk.events_plot (events, signal)
fig4

events_to_mne (events, event_conditions=None)
Create MNE compatible events for integration with M/EEG.

Parameters

 events (list or ndarray or dict) — Events onset location. Can also be a dict obtained
through ‘events_find()’.

* event_conditions (/isr) — An optional list containing, for each event, for example the trial
category, group or experimental conditions. Defaults to None.

Returns ruple — MNE-formatted events and the event id, that can be added via
‘raw.add_events(events), and a dictionary with event’s names.

See also:

events_find()

7.9. Events 189

https://mne.tools/stable/index.html

NeuroKit2, Release 0.0.39

Examples

numpy
pandas
neurokit2 as nk

signal nk.signal_simulate (duration=4)
events nk.events_find(signal)

events, event_id nk.events_to_mne (events)
events
array ([[

events nk.events_find(signal, event_conditions=["A", "B", "A", "B"])
events, event_id nk.events_to_mne (events)
event_id

'A': 1}

7.10 Data

Submodule for NeuroKit.

data (dataset="bio_eventrelated _100hz")
Download example datasets.

Download and load available example datasets. Note that an internet connexion is necessary.
Parameters dataset (str) — The name of the dataset. The list and description is available here.

Returns DataFrame — The data.

Examples

neurokit2 as nk

data nk.data ("bio_eventrelated_100hz")

read_acgknowledge (filename, sampling_rate='max’, resample_method="interpolation’, im-
pute_missing=True)
Read and format a BIOPAC’s AcqKnowledge file into a pandas’ dataframe.

The function outputs both the dataframe and the sampling rate (encoded within the AcqKnowledge) file.
Parameters

* filename (s7r) — Filename (with or without the extension) of a BIOPAC’s AcqKnowledge
file.

» sampling_rate (int) — Sampling rate (in Hz, i.e., samples/second). Since an AcqKnowl-
edge file can contain signals recorded at different rates, harmonization is necessary in
order to convert it to a DataFrame. Thus, if sampling_rate is set to ‘max’ (default), will
keep the maximum recorded sampling rate and upsample the channels with lower rate if

190 Chapter 7. Functions

https://github.com/neuropsychology/NeuroKit/tree/master/data#datasets
https://neurokit2.readthedocs.io/en/master/datasets.html

NeuroKit2, Release 0.0.39

necessary (using the signal_resample() function). If the sampling rate is set to a given
value, will resample the signals to the desired value. Note that the value of the sampling
rate is outputted along with the data.

* resample_method (str) — Method of resampling (see signal_resample()).

* impute_missing (bool) — Sometimes, due to connections issues, the signal has some
holes (short periods without signal). If ‘impute_missing’ is True, will automatically fill
the signal interruptions using padding.

Returns
o df (DataFrame) — The AcqKnowledge file converted to a dataframe.
« sampling rate (int) — The AcqKnowledge file converted to its sampling rate.
See also:

signal_resample ()

Example

neurokit2 as nk

data, sampling_rate nk.read_acgknowledge ('file.acq')

7.11 Epochs

Submodule for NeuroKit.

epochs_create (data, events=None, sampling_rate=1000, epochs_start=0, epochs_end=1,

) event_labels=None, event_conditions=None, baseline_correction=False)
Epoching a dataframe.

Parameters

* data (DataFrame) — A DataFrame containing the different signal(s) as different columns.
If a vector of values is passed, it will be transformed in a DataFrame with a single ‘Signal’
column.

* events (list or ndarray or dict) — Events onset location. If a dict is passed (e.g., from
events_find()), will select only the ‘onset’ list. If an integer is passed, will use
this number to create an evenly spaced list of events. If None, will chunk the signal into
successive blocks of the set duration.

» sampling_rate (inf) — The sampling frequency of the signal (in Hz, i.e., samples/second).

* epochs_start (int) — Epochs start relative to events_onsets (in seconds). The start can be
negative to start epochs before a given event (to have a baseline for instance).

* epochs_end (int) — Epochs end relative to events_onsets (in seconds).

 event_labels (/ist) — A list containing unique event identifiers. If None, will use the event
index number.

* event_conditions (/isf) — An optional list containing, for each event, for example the trial
category, group or experimental conditions.

¢ baseline_correction (bool) — Defaults to False.

7.11. Epochs 191

NeuroKit2, Release 0.0.39

Returns dict — A dict containing DataFrames for all epochs.
See also:

events_find(),events_plot (), epochs_to_df(),epochs_plot ()

Examples

neurokit2 as nk

data nk.data ("bio_eventrelated_100hz")

events nk.events_find(data["Photosensor"],
threshold_keep='below',
event_conditions=["Negative", "Neutral", "Neutral",
"Negative"])
figl nk.events_plot (events, data)
figl

epochs nk.epochs_create (data, events, sampling rate-100, epochs_end-3)
fig2 nk .epochs_plot (epochs)
fig2

epochs nk.epochs_create (data, events, sampling rate=100, epochs_end-3,
baseline_correction-True)

fig3 nk .epochs_plot (epochs)

fig3

epochs nk.epochs_create (data, sampling_rate=100, epochs_end-1)

epochs_plot (epochs, legend=True, show=True)
Plot epochs.

Parameters

* epochs (dict) — A dict containing one DataFrame per event/trial. Usually obtained via
epochs_create().

* legend (bool) — Display the legend (the key of each epoch).

* show (bool) — If True, will return a plot. If False, will return a DataFrame that can be
plotted externally.

Returns epochs (dict) — dict containing all epochs.
See also:

events_find (), events_plot (), epochs_create (), epochs_to_df ()

192 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

data nk.data ("bio_eventrelated_100hz")

events nk.events_find(data["Photosensor"],
threshold_keep='below',
event_conditions=["Negative", "Neutral", "Neutral",

"Negative"])
epochs nk.epochs_create (data, events, sampling rate-=200, epochs_end-1)

figl nk .epochs_plot (epochs)
figl

signal nk.ecg_simulate (duration=10)

events nk.ecg_findpeaks (signal)

epochs nk.epochs_create(signal, events=events|["ECG_R_Peaks"], epochs_start
5, epochs_end=0.5)

fig2 nk .epochs_plot (epochs)
fig2

epochs_to_array (epochs)
Convert epochs to an array.

TODO: make it work with uneven epochs (not the same length).

Parameters epochs (dict) — A dict containing one DataFrame per event/trial. Usually obtained via
epochs_create().

Returns array — An array containing all signals.
See also:

events_find(),events_plot (), epochs _create (), epochs_plot ()

Examples

neurokit2
pandas as

signal nk.signal_simulate (sampling_rate=100)

epochs nk.epochs_create(signal, events=[400, 30 16 sampling_rate=100,
epochs_end=1)

X nk.epochs_to_array (epochs)

nk.signal_ plot (X.T)

epochs_to_df (epochs)
Convert epochs to a DataFrame.

Parameters epochs (dict) — A dict containing one DataFrame per event/trial. Usually obtained via
epochs_create().

Returns DataFrame — A DataFrame containing all epochs identifiable by the ‘Label’ column,
which time axis is stored in the ‘Time’ column.

7.11. Epochs 193

NeuroKit2, Release 0.0.39

See also:

events_find(),events_plot (), epochs _create (), epochs_plot ()

Examples

neurokit2 as
pandas as

data pd.read_csv ("https://raw.githubusercontent.com/neuropsychology/

NeuroKit/dev/data/bio_eventrelated_100hz.csv")

events nk.events_find(data["Photosensor"],
threshold_keep='below',
event_conditions=["Negative", "Neutral", "Neutral",
"Negative"])
fig nk.events_plot (events, data)
fig

epochs nk.epochs_create (data, events, sampling rate=20(epochs_end=3)
data nk.epochs_to_df (epochs)

7.12 Statistics

Submodule for NeuroKit.

cor (x, y, method="pearson’, show=False)
Density estimation.

Computes kernel density estimates.
Parameters
e x (Union[list, np.array, pd.Series]) — Vectors of values.
* y (Union[list, np.array, pd.Series]) — Vectors of values.
* method (str) — Correlation method. Can be one of ‘pearson’, ‘spearman’, ‘kendall’.
» show (bool) — Draw a scatterplot with a regression line.

Returns r — The correlation coefficient.

Examples

method="pearson", show=True)

194 Chapter 7. Functions

NeuroKit2, Release 0.0.39

density (x, desired_length=100, bandwith=1, show=False)
Density estimation.

Computes kernel density estimates.
Parameters

e x (Union[list, np.array, pd.Series]) — A vector of values.

desired_length (inf) — The amount of values in the returned density estimation.

bandwith (floar) — The bandwith of the kernel. The smaller the values, the smoother the
estimation.

 show (bool) — Display the density plot.
Returns
* x, y — The x axis of the density estimation.

* y—The y axis of the density estimation.

Examples

neurokit2 as nk

signal nk.ecg_simulate (duration
X, Y nk.density(signal, bandwith=0.5, show=True)

yl nk.density(signal, bandwith=0.5)
y2 nk.density(signal, bandwith-=1)
y3 nk.density(signal, bandwith=2)
DataFrame ({"x": x, "yl1": yl1l, "y2":

distance (X=None, method="mahalanobis')
Distance.

Compute distance using different metrics.
Parameters
e X (array or DataFrame) — A dataframe of values.

* method (str) — The method to use. One of ‘mahalanobis’ or ‘mean’ for the average
distance from the mean.

Returns array — Vector containing the distance values.

Examples

sklearn datasets
neurokit2 as nk

X datasets.load iris () .data
vector distance (X)
vector

fit_error (y, y_predicted, n_parameters=2)
Calculate the fit error for a model.

7.12. Statistics 195

NeuroKit2, Release 0.0.39

Also specific and direct access functions can be used, such as fit_mse(), fit_rmse() and fit_r2().
Parameters
* y (Union/[list, np.array, pd.Series]) — The response variable (the y axis).
 y_predicted (Union[list, np.array, pd.Series]) — The fitted data generated by a model.

* n_parameters (inf) — Number of model parameters (for the degrees of freedom used in
R2).

Returns dict — A dictionary containing different indices of fit error.
See also:

fit_mse (), fit_rmse (), fit_r2()

Examples

neurokit2 as nk

=

v np.array ([-1.0, 0.5, 0,
y_predicted np.array ([0.0,

nk.fit_error(y, y_predicted)

<. fit_mse(y, y_predicted)
fit_rmse(y, y_predicted)
5476

fit_r2(y, y_predicted, adjusted-Fa

475

fit_r2(y, y_predicted, adjusted=True, n_parameters=2)
0.0571909584179

fit_loess (y, X=None, alpha=0.75, order=2)
Local Polynomial Regression (LOESS)

Performs a LOWESS (LOcally WEighted Scatter-plot Smoother) regression.
Parameters
* y (Unionl[list, np.array, pd.Series]) — The response variable (the y axis).

* X (Unionllist, np.array, pd.Series]) — Explanatory variable (the x axis). If ‘None’, will
treat y as a continuous signal (useful for smoothing).

* alpha (float) — The parameter which controls the degree of smoothing, which corresponds
to the proportion of the samples to include in local regression.

* order (inf) — Degree of the polynomial to fit. Can be 1 or 2 (default).
Returns array — Prediciton of the LOESS algorithm.
See also:

signal_smooth (), signal_detrend(), fit_error()

196 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

pandas as pd
neurokit2 as nk

signal np.cos (np.linspace (start=0, stop=10, num=1000))
distorted nk.signal_distort (signal, noise_amplitude-=[0.3,
frequency=[5, 10, 50])

pd.DataFrame ({ "Raw": distorted, "Loess_1": nk.fit_loess(distorted,
"Loess_2": nk.fit_loess (distorted, order=2)}) .plot ()

References
¢ https://simplyor.netlify.com/loess-from-scratch-in-python-animation.en-us/
fit _mixture (X=None, n_clusters=2)
Gaussian Mixture Model.
Performs a polynomial regression of given order.
Parameters
* X (Union[list, np.array, pd.Series]) — The values to classify.
* n_clusters (int) — Number of components to look for.
Returns pd.DataFrame — DataFrame containing the probability of belongning to each cluster.
See also:

signal_detrend(), fit_error()

Examples

pandas jolel
neurokit2 as nk

X nk.signal_simulate ()

probs nk.fit_mixture(x, n_clusters—2)

fig nk.signal_plot ([x, probs["Cluster_0"], probs["Cluster_1"]],
standardize-True)

fig

fit_mse (y, y_predicted)
Compute Mean Square Error (MSE).

fit_polynomial (y, X=None, order=2)
Polynomial Regression.

Performs a polynomial regression of given order.
Parameters
* y (Unionl[list, np.array, pd.Series]) — The response variable (the y axis).

* X (Unionllist, np.array, pd.Series]) — Explanatory variable (the x axis). If ‘None’, will
treat y as a continuous signal.

7.12. Statistics 197

https://simplyor.netlify.com/loess-from-scratch-in-python-animation.en-us/

NeuroKit2, Release 0.0.39

* order (inf) — The order of the polynomial. 0, 1 or > 1 for a baseline, linear or polynomial
fit, respectively. Can also be ‘auto’, it which case it will attempt to find the optimal order
to minimize the RMSE.

Returns array — Prediction of the regression.
See also:

signal_detrend(), fit_error (), fit_polynomial_findorder ()

Examples

pandas as pd
neurokit2 as nk

y np.cos (np.linspace (start=0, stop=10

pd.DataFrame ({"y": y, "Poly_0": nk.fit_polynomial (y, order=0),

"Poly_1": nk.fit_polynomial (y, order=1),

"Poly_2": nk.fit_polynomial (y, order=2),

"Poly_3": nk.fit_polynomial(y, order=3), "Poly_ 5": nk.fit_
polynomial (y, order=5),

"Poly_auto": nk.fit_polynomial (y, order='auto')}) .plot ()

fit_polynomial_findorder (y, X=None, max_order=6)
Polynomial Regression.

Find the optimal order for polynomial fitting. Currently, the only method implemented is RMSE minimization.
Parameters
* y (Union[list, np.array, pd.Series]) — The response variable (the y axis).

* X (Union[list, np.array, pd.Series]) — Explanatory variable (the x axis). If ‘None’, will
treat y as a continuous signal.

¢ max_order (inf) — The maximum order to test.
Returns int — Optimal order.
See also:

fit_polynomial ()

Examples

neurokit2 as nk

v np.cos (np.linspace (start=0, stop=10, num=100))

nk.fit_polynomial_ findorder (y, max_order=10)

fit_x2 (y, y_predicted, adjusted=True, n_parameters=2)
Compute R2.

fit_rmse (y, y_predicted)
Compute Root Mean Square Error (RMSE).

198 Chapter 7. Functions

NeuroKit2, Release 0.0.39

hdi (x, ¢i=0.95, show=False, **kwargs)
Highest Density Interval (HDI)

Compute the Highest Density Interval (HDI) of a distribution. All points within this interval have a higher
probability density than points outside the interval. The HDI can be used in the context of uncertainty charac-
terisation of posterior distributions (in the Bayesian farmework) as Credible Interval (CI). Unlike equal-tailed
intervals that typically exclude 2.5% from each tail of the distribution and always include the median, the HDI
is not equal-tailed and therefore always includes the mode(s) of posterior distributions.

Parameters
* x (Unionl[list, np.array, pd.Series]) — A vector of values.

* ci (float) — Value of probability of the (credible) interval - CI (between 0 and 1) to be
estimated. Default to .95 (95%).

* show (bool) — If True, the function will produce a figure.

o **kwargs (Line2D properties) — Other arguments to be passed to density ().

See also:
density ()
Returns
* float(s) — The HDI low and high limits.
* fig — Distribution plot.
Examples

numpy as np
neurokit2 as nk

X np.random.normal (loc=0, scale=1, size=10
ci_min, ci_high nk.hdi(x, ci=0.95, show=True

mad (x, constant=1.4826)
Median Absolute Deviation: a “robust” version of standard deviation.

Parameters
e x (Union[list, np.array, pd.Series]) — A vector of values.
* constant (float) — Scale factor. Use 1.4826 for results similar to default R.

Returns float — The MAD.

Examples

neurokit2 as nk
nk.mad([2,

3.706

7.12. Statistics 199

NeuroKit2, Release 0.0.39

References
* https://en.wikipedia.org/wiki/Median_absolute_deviation

mutual_information (x, y, method="varoquaux', bins=256, sigma=1, normalized=True)
Computes the (normalized) mutual information (MI) between two vectors from a joint histogram. The mu-
tual information of two variables is a measure of the mutual dependence between them. More specifically, it
quantifies the “amount of information” obtained about one variable by observing the other variable.

Parameters
e x (Union[list, np.array, pd.Series]) — A vector of values.
* y (Union[list, np.array, pd.Series]) — A vector of values.
* method (str) — Method to use. Can either be ‘varoquaux’ or ‘nolitsa’.
* bins (inf) — Number of bins to use while creating the histogram.

* sigma (float) — Sigma for Gaussian smoothing of the joint histogram. Only used if
method=="varoquaux’.

* normalized (book) — Compute normalised mutual information. Only used if
method=="varoquaux’.

Returns float — The computed similariy measure.

Examples

neurokit2 as nk

nk.mutual_information (x, y, method="varoquaux")

751227291816

nk.mutual_information(x, y, method="nolitsa")
1.4591479170272448

References

t1)

 Studholme, jhill & jhawkes (1998). “A normalized entropy measure of 3-D medical image alignment”.

in Proc. Medical Imaging 1998, vol. 3338, San Diego, CA, pp. 132-143.

rescale (data, to=[0, 1])
Rescale data.

Rescale a numeric variable to a new range.
Parameters
e data (Union[list, np.array, pd.Series]) — Raw data.
* to (list) — New range of values of the data after rescaling.

Returns /ist — The rescaled values.

200 Chapter 7. Functions

https://en.wikipedia.org/wiki/Median_absolute_deviation

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

nk.rescale(data=[3, 1, 2,
[0.4, 0.0, 0.2, 0.6000000000000001, 1.0]

standardize (data, robust=False, window=None, **kwargs)
Standardization of data.

Performs a standardization of data (Z-scoring), i.e., centering and scaling, so that the data is expressed in terms
of standard deviation (i.e., mean = 0, SD = 1) or Median Absolute Deviance (median = 0, MAD = 1).

Parameters
* data (Union[list, np.array, pd.Series]) — Raw data.

* robust (bool) — If True, centering is done by substracting the median from the variables
and dividing it by the median absolute deviation (MAD). If False, variables are standard-
ized by substracting the mean and dividing it by the standard deviation (SD).

» window (inf) — Perform a rolling window standardization, i.e., apply a standardization on
a window of the specified number of samples that rolls along the main axis of the signal.
Can be used for complex detrending.

o **kwargs (optional) — Other arguments to be passed to pandas.rolling().

Returns list — The standardized values.

Examples

neurokit2 as nk
pandas as pd

nk.standardize ([3, 1, 2 6, np.nan])
-1
nk.standardize([3, 1, 2, 4, 6, np.nan], robust=True)
-]
nk.standardize (np.array ([[1, 2, 3,
array (...)
nk.standardize (pd.DataFrame ({"A":
"B":

signal nk.signal_simulate (frequency-[0.1, 2], sampling_rate=200)
z nk.standardize (signal, window=200)
nk.signal_plot ([signal, z], standardize-True)

summary_plot (x, **kwargs)
Descriptive plot.

Visualize a distribution with density, histogram, boxplot and rugs plots all at once.

7.12. Statistics 201

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk
numpy as np

X np.random.normal (size=100)
fig nk.summary_plot (x)
fig

7.13 Complexity

Submodule for NeuroKit.

complexity_apen (signal, delay=1, dimension=2, r="'default', corrected=False, **kwargs)
Approximate entropy (ApEn)

Python implementations of the approximate entropy (ApEn) and its corrected version (cApEn). Approximate
entropy is a technique used to quantify the amount of regularity and the unpredictability of fluctuations over
time-series data. The advantages of ApEn include lower computational demand (ApEn can be designed to work
for small data samples (< 50 data points) and can be applied in real time) and less sensitive to noise. However,
ApEn is heavily dependent on the record length and lacks relative consistency.

This function can be called either via ent ropy_approximate () or complexity_apen (), and the cor-
rected version via complexity_capen ().

Parameters

« signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* r (floar) — Tolerance (similarity threshold). It corresponds to the filtering level - max
absolute difference between segments. If ‘default’, will be set to 0.2 times the standard
deviation of the signal (for dimension = 2).

* corrected (bool) — If true, will compute corrected ApEn (cApEn), see Porta (2007).
o *¥kwargs — Other arguments.
See also:

entropy_shannon (), entropy_sample (), entropy_fuzzy()

Returns float — The approximate entropy as float value.

202 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)

entropyl nk.entropy_approximate (signal)

entropyl

entropy?2 nk.entropy_approximate (signal, corrected-True)
entropy2

References

e EntroPy <https://github.com/raphaelvallat/entropy>"_

e Sabeti, M., Katebi, S., & Boostani, R. (2009). Entropy and complexity measures for EEG signal classifi-
cation of schizophrenic and control participants. Artificial intelligence in medicine, 47(3), 263-274.

e Shi, B., Zhang, Y., Yuan, C., Wang, S., & Li, P. (2017). Entropy analysis of short-term heartbeat interval
time series during regular walking. Entropy, 19(10), 568.

complexity_capen (signal, delay=1, dimension=2, r='default', *, corrected=True, **kwargs)
Approximate entropy (ApEn)

Python implementations of the approximate entropy (ApEn) and its corrected version (cApEn). Approximate
entropy is a technique used to quantify the amount of regularity and the unpredictability of fluctuations over
time-series data. The advantages of ApEn include lower computational demand (ApEn can be designed to work
for small data samples (< 50 data points) and can be applied in real time) and less sensitive to noise. However,
ApEn is heavily dependent on the record length and lacks relative consistency.

This function can be called either via ent ropy_approximate () or complexity_apen (), and the cor-
rected version via complexity_capen ().

Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

* dimension (inf) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* r (float) — Tolerance (similarity threshold). It corresponds to the filtering level - max
absolute difference between segments. If ‘default’, will be set to 0.2 times the standard
deviation of the signal (for dimension = 2).

* corrected (bool) — If true, will compute corrected ApEn (cApEn), see Porta (2007).
» *¥kwargs — Other arguments.
See also:

entropy_shannon (), entropy_sample (), entropy_fuzzy()

Returns float — The approximate entropy as float value.

7.13. Complexity 203

https://github.com/raphaelvallat/entropy

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)

entropyl nk.entropy_approximate (signal)

entropyl

entropy?2 nk.entropy_approximate (signal, corrected-True)
entropy2

References

e EntroPy <https://github.com/raphaelvallat/entropy>"_

» Sabeti, M., Katebi, S., & Boostani, R. (2009). Entropy and complexity measures for EEG signal classifi-
cation of schizophrenic and control participants. Artificial intelligence in medicine, 47(3), 263-274.

e Shi, B., Zhang, Y., Yuan, C., Wang, S., & Li, P. (2017). Entropy analysis of short-term heartbeat interval
time series during regular walking. Entropy, 19(10), 568.

complexity_cmse (signal, scale='default', dimension=2, r='default', *, composite=True, refined=False,

fuzzy=False, show=False, **kwargs)
Multiscale entropy (MSE) and its Composite (CMSE), Refined (RCMSE) or fuzzy version.

Python implementations of the multiscale entropy (MSE), the composite multiscale entropy (CMSE), the refined
composite multiscale entropy (RCMSE) or their fuzzy version (FuzzyMSE, FuzzyCMSE or FuzzyRCMSE).

This function can be called either via entropy_multiscale() or complexity_mse ().
Moreover, variants can be directly accessed via complexity_cmse (), complexity_rcmse()",
complexity_fuzzymse () and complexity_ fuzzyrcmse ().

Parameters

* signal (Union/list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* scale (str or int or list) — A list of scale factors used for coarse graining the time series.
If ‘default’, will use range (len (signal) / (dimension + 10)) (see discus-
sion here). If ‘max’, will use all scales until half the length of the signal. If an integer,
will create a range until the specified int.

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* 1 (floar) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

* composite (bool) — Returns the composite multiscale entropy (CMSE), more accurate
than MSE.

* refined (bool) — Returns the ‘refined” composite MSE (RCMSE; Wu, 2014)

* fuzzy (bool) — Returns the fuzzy (composite) multiscale entropy (FuzzyMSE, Fuzzy-
CMSE or FuzzyRCMSE).

* show (bool) — Show the entropy values for each scale factor.

» *¥*kwargs — Optional arguments.

204 Chapter 7. Functions

https://github.com/raphaelvallat/entropy
https://github.com/neuropsychology/NeuroKit/issues/75#issuecomment-583884426

NeuroKit2, Release 0.0.39

Returns float — The point-estimate of multiscale entropy (MSE) as a float value corresponding to
the area under the MSE values curvee, which is essentially the sum of sample entropy values
over the range of scale factors.

See also:

entropy_shannon (), entropy_approximate (), entropy_sample (), entropy_fuzzy()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency-5)
entropyl nk.entropy_multiscale (signal, show=True)
entropyl

entropy?2 nk.entropy_multiscale (signal, show=True, composite=True)
entropy?2

entropy3 nk.entropy_multiscale (signal, show=True, refined-=True)
entropy3

References

* pyEntropy <https://github.com/nikdon/pyEntropy>"_

e Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy
and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-
H2049.

* Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals.
Physical review E, 71(2), 021906.

* Gow, B. J,, Peng, C. K., Wayne, P. M., & Ahn, A. C. (2015). Multiscale entropy analysis of center-of-
pressure dynamics in human postural control: methodological considerations. Entropy, 17(12), 7926-
7947.

¢ Norris, P. R., Anderson, S. M., Jenkins, J. M., Williams, A. E., & Morris Jr, J. A. (2008). Heart rate
multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock, 30(1), 17-
22.

e Liu, Q., Wei, Q., Fan, S. Z., Lu, C. W,, Lin, T. Y., Abbod, M. F., & Shieh, J. S. (2012). Adaptive
computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia
during surgery. Entropy, 14(6), 978-992.

complexity_d2 (signal, delay=1, dimension=2, r=64, show=False)
Correlation Dimension.
Python implementation of the Correlation Dimension D2 of a signal.
This function can be called either via fractal_correlation () or complexity_d2 ().
Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

7.13. Complexity 205

https://github.com/nikdon/pyEntropy

NeuroKit2, Release 0.0.39

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* r (str or int or list) — The sequence of radiuses to test. If an integer is passed, will get an
exponential sequence ranging from 2.5% to 50% of the distance range. Methods imple-
mented in other packages can be used via setting r="'nolds"' or r="Corr_Dim".

* show (bool) — Plot of correlation dimension if True. Defaults to False.

Returns D2 (float) — The correlation dimension D2.

Examples

neurokit2 as nk
signal nk.signal_simulate (duration=2, frequency=5)

fractall nk.fractal_correlation(signal, r-"nolds", show=True)
fractall

fractal2 nk.fractal_correlation(signal, r=32, show=True)
fractal2

signal nk.rsp_simulate (duration=120, sampling_rate=50)

fractal3 nk.fractal_correlation(signal, r="nolds", show=True)
fractal3

fractald nk.fractal correlation(signal, r=32, show=True)
fractald

References

* Bolea, J., Laguna, P., Remartinez, J. M., Rovira, E., Navarro, A., & Bailén, R. (2014). Methodological
framework for estimating the correlation dimension in HRV signals. Computational and mathematical
methods in medicine, 2014.

* Boon, M. Y., Henry, B. L., Suttle, C. M., & Dain, S. J. (2008). The correlation dimension: A useful
objective measure of the transient visual evoked potential?. Journal of vision, 8(1), 6-6.

* nolds
e Corr_Dim
complexity_delay (signal, delay_max=100, method=fraser1986', show=False)
Estimate optimal Time Delay (tau) for time-delay embedding.

The time delay (Tau) is one of the two critical parameters involved in the construction of the time-delay embed-
ding of a signal.

Several authors suggested different methods to guide the choice of Tau:

* Fraser and Swinney (1986) suggest using the first local minimum of the mutual information between the
delayed and non-delayed time series, effectively identifying a value of tau for which they share the least
information.

* Theiler (1990) suggested to select Tau where the autocorrelation between the signal and its lagged version
at Tau first crosses the value 1/e.

206 Chapter 7. Functions

https://github.com/CSchoel/nolds/blob/master/nolds/measures.py
https://github.com/jcvasquezc/Corr_Dim

NeuroKit2, Release 0.0.39

 Casdagli (1991) suggests instead taking the first zero-crossing of the autocorrelation.

* Rosenstein (1993) suggests to the point close to 40% of the slope of the average displacement from the
diagonal (ADFD).
Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay_max (inf) — The maximum time delay (Tau or lag) to test.

¢ method (str) — Correlation method. Can be one of ‘fraser1986°, ‘theiler1990°, ‘cas-
dagli1991°, ‘rosenstein1993’.

* show (bool) — If true, will plot the mutual information values for each value of tau.

Returns int — Optimal time delay.

See also:

complexity_dimension (), complexity_embedding ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration-10, frequency-1, noise
nk.signal plot (signal)

delay nk.complexity_delay(signal, delay_max-1000, show-True, method
"fraserl1986")

delay nk.complexity_delay(signal, delay_max=1000, show=True, method
"theiler1990")

delay nk.complexity_delay(signal, delay_max=1000, show=True, method
"casdaglil99ol")

delay nk.complexity_delay(signal, delay_max=1000, show=True, method
"rosensteinl993")

ecg nk.ecg_simulate (duration=60+6, sampling_ rate=150)

signal nk.ecg_rate (nk.ecg_peaks (ecg, sampling_rate=150), sampling_rate
desired_length-=1len (ecqg))

nk.signal_plot (signal)

delay nk.complexity_delay(signal, delay_max-=1000, show-True)

7.13. Complexity 207

NeuroKit2, Release 0.0.39

References

e Gautama, T., Mandic, D. P, & Van Hulle, M. M. (2003, April). A differential entropy based method for
determining the optimal embedding parameters of a signal. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). (Vol. 6, pp. VI-29). IEEE.

e Camplani, M., & Cannas, B. (2009). The role of the embedding dimension and time delay in time series
forecasting. IFAC Proceedings Volumes, 42(7), 316-320.

* Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1994). Reconstruction expansion as a geometry-based
framework for choosing proper delay times. Physica-Section D, 73(1), 82-98.

complexity_dfa (signal, windows='default', overlap=True, integrate=True, order=1, multifractal=False,

q=2, show=False)
(Multifractal) Detrended Fluctuation Analysis (DFA or MFDFA)

Python implementation of Detrended Fluctuation Analysis (DFA) or Multifractal DFA of a signal. Detrended
fluctuation analysis, much like the Hurst exponent, is used to find long-term statistical dependencies in time
series.

This function can be called either via fractal_dfa () or complexity_dfa (), and its multifractal variant
can be directly accessed via fractal_mfdfa () or complexity_mfdfa ()

Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

» windows (/ist) — A list containing the lengths of the windows (number of data points in
each subseries). Also referred to as ‘lag’ or ‘scale’. If ‘default’, will set it to a logarith-
mic scale (so that each window scale hase the same weight) with a minimum of 4 and
maximum of a tenth of the length (to have more than 10 windows to calculate the average
fluctuation).

* overlap (bool) — Defaults to True, where the windows will have a 50% overlap with each
other, otherwise non-overlapping windows will be used.

* integrate (bool) — It is common practice to convert the signal to a random walk (i.e.,
detrend and integrate, which corresponds to the signal ‘profile’). Note that it leads to the
flattening of the signal, which can lead to the loss of some details (see Ihlen, 2012 for
an explanation). Note that for strongly anticorrelated signals, this transformation should
be applied two times (i.e., provide np.cumsum (signal - np.mean(signal))
instead of signal).

* order (int) — The order of the polynoiam trend, 1 for the linear trend.

» multifractal (bool) — If true, compute Multifractal Detrended Fluctuation Analysis
(MFDFA), in which case the argument " g is taken into account.

* q (list) — The sequence of fractal exponents when multifractal=True. Must be
a sequence between -10 and 10 (nota that zero will be removed, since the code does
not converge there). Setting q = 2 (default) gives a result close to a standard DFA. For
instance, Ihlen (2012) usese ** q=[-5, -3,-1,0, 1, 3, 5]".

¢ show (bool) — Visualise the trend between the window size and the fluctuations.

Returns dfa (float) — The DFA coefficient.

208

Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=3, noise=0.05

dfal nk.fractal_dfa(signal, show=True)

dfal

dfa2 nk.fractal _mfdfa(signal, g-np.arange (-3, 4), show=True)
dfaz

References
e Thlen, E. A. F. E. (2012). Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers
in physiology, 3, 141.

e Hardstone, R., Poil, S. S., Schiavone, G., Jansen, R., Nikulin, V. V., Mansvelder, H. D., & Linkenkaer-
Hansen, K. (2012). Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Frontiers
in physiology, 3, 450.

¢ nolds
¢ Youtube introduction
complexity_dimension (signal, delay=1, dimension_max=20, method='afnn', show=False, R=10.0,

A=2.0, **kwargs)
Estimate optimal Dimension (m) for time-delay embedding.

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
complexity_delay ()).

dimension_max (int) — The maximum embedding dimension (often denoted ‘m’ or ‘d’,
sometimes referred to as ‘order’) to test.

method (str) — Method can either be afnn (average false nearest neighbour) or fnn (false
nearest neighbour).

show (bool) — Visualize the result.
* R (float) — Relative tolerance (for fnn method).
¢ A (float) — Absolute tolerance (for fnn method)
o *¥kwargs — Other arguments.
Returns int — Optimal dimension.
See also:

complexity_delay (), complexity_ embedding ()

7.13. Complexity 209

https://github.com/CSchoel/nolds/
https://www.youtube.com/watch?v=o0LndP2OlUI

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10, frequency=1, noise=0.01)

delay nk.complexity_delay(signal, delay_max=500)

values nk.complexity_dimension(signal, delay-=delay, dimension_max=20,
show-True)

References

e Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time
series. Physica D: Nonlinear Phenomena, 110(1-2), 43-50.

complexity_embedding (signal, delay=1, dimension=3, show=False)

Time-delay embedding of a time series (a signal)

A dynamical system can be described by a vector of numbers, called its ‘state’, that aims to provide a complete
description of the system at some point in time. The set of all possible states is called the ‘state space’.

Takens’s (1981) embedding theorem suggests that a sequence of measurements of a dynamic system includes
in itself all the information required to completely reconstruct the state space. Delay coordinate embedding
attempts to identify the state s of the system at some time t by searching the past history of observations for
similar states, and, by studying the evolution of similar states, infer information about the future of the system.

How to visualize the dynamics of a system? A sequence of state values over time is called a trajectory. De-
pending on the system, different trajectories can evolve to a common subset of state space called an attractor.
The presence and behavior of attractors gives intuition about the underlying dynamical system. We can visual-
ize the system and its attractors by plotting the trajectory of many different initial state values and numerically
integrating them to approximate their continuous time evolution on discrete computers.

This function is adapted from EntroPy and is equivalent to the delay_embedding() function from ‘nolds’.
Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* show (bool) — Plot the reconstructed attractor.
Returns array — Embedded time-series, of shape (n_times - (order - 1) * delay, order)
See also:

embedding_delay (), embedding_dimension ()

210

Chapter 7. Functions

https://github.com/raphaelvallat/entropy

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

=

signal nk.signal_simulate (duration=2, frequency=5, noise=0.01)

SuleltelelSYel nk.complexity_embedding(signal, delay=50, dimension=2, show=True)
embedded nk.complexity_embedding(signal, delay=50, dimension=3, show=True)
embedded nk.complexity_embedding(signal, delay=50, dimension=4, show=True)

ecg nk.ecg_simulate (duration=60+4, sampling rate=200)
signal nk.ecg_rate (nk.ecg_peaks (ecg, sampling_rate=200) [0], sampling_
rate=200, desired_length-1len (ecqg))

C

Sulelteleltel nk.complexity_embedding(signal, delay-250, dimension=2, show
embedded nk.complexity_embedding(signal, delay-250, dimension-=3, show
embedded nk.complexity_embedding(signal, delay=250, dimension=4, show

References

e Gautama, T., Mandic, D. P., & Van Hulle, M. M. (2003, April). A differential entropy based method for
determining the optimal embedding parameters of a signal. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). (Vol. 6, pp. VI-29). IEEE.

complexity_fuzzycmse (signal, scale='default’, dimension=2, r='default’, *, composite=True, re-

fined=False, fuzzy=True, show=False, **kwargs)
Multiscale entropy (MSE) and its Composite (CMSE), Refined (RCMSE) or fuzzy version.

Python implementations of the multiscale entropy (MSE), the composite multiscale entropy (CMSE), the refined
composite multiscale entropy (RCMSE) or their fuzzy version (FuzzyMSE, FuzzyCMSE or FuzzyRCMSE).

This function can be called either via entropy_multiscale() or complexity_mse ().
Moreover, variants can be directly accessed via complexity_cmse (), complexity_rcmse()",
complexity_fuzzymse () and complexity_ fuzzyrcmse ().

Parameters

« signal (Union/list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* scale (str or int or list) — A list of scale factors used for coarse graining the time series.
If ‘default’, will use range (len (signal) / (dimension + 10)) (see discus-
sion here). If ‘max’, will use all scales until half the length of the signal. If an integer,
will create a range until the specified int.

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* 1 (float) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

* composite (bool) — Returns the composite multiscale entropy (CMSE), more accurate
than MSE.

* refined (bool) — Returns the ‘refined” composite MSE (RCMSE; Wu, 2014)

7.13. Complexity 211

https://github.com/neuropsychology/NeuroKit/issues/75#issuecomment-583884426

NeuroKit2, Release 0.0.39

* fuzzy (bool) — Returns the fuzzy (composite) multiscale entropy (FuzzyMSE, Fuzzy-
CMSE or FuzzyRCMSE).

* show (bool) — Show the entropy values for each scale factor.
o *¥kwargs — Optional arguments.

Returns float — The point-estimate of multiscale entropy (MSE) as a float value corresponding to
the area under the MSE values curvee, which is essentially the sum of sample entropy values
over the range of scale factors.

See also:

entropy_shannon (), entropy_approximate (), entropy_sample (), entropy_fuzzy()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)
entropyl nk.entropy_multiscale (signal, show=True)

entropyl

entropy2 nk.entropy_multiscale (signal, show=True, composite=True)
entropy?2

entropy3 nk.entropy_multiscale(signal, show=True, refined=True)
entropy3

References

* pyEntropy <https://github.com/nikdon/pyEntropy>"_

e Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy
and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-
H2049.

* Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals.
Physical review E, 71(2), 021906.

* Gow, B. J,, Peng, C. K., Wayne, P. M., & Ahn, A. C. (2015). Multiscale entropy analysis of center-of-
pressure dynamics in human postural control: methodological considerations. Entropy, 17(12), 7926-
7947.

¢ Norris, P. R., Anderson, S. M., Jenkins, J. M., Williams, A. E., & Morris Jr, J. A. (2008). Heart rate
multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock, 30(1), 17-
22.

e Liu, Q., Wei, Q., Fan, S. Z., Lu, C. W, Lin, T. Y., Abbod, M. F, & Shieh, J. S. (2012). Adaptive
computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia
during surgery. Entropy, 14(6), 978-992.

complexity_fuzzyen (signal, delay=1, dimension=2, r="default', **kwargs)
Fuzzy entropy (FuzzyEn)
Python implementations of the fuzzy entropy (FuzzyEn) of a signal.
This function can be called either via entropy_fuzzy () or complexity_ fuzzyen ().

Parameters

212 Chapter 7. Functions

https://github.com/nikdon/pyEntropy

NeuroKit2, Release 0.0.39

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

¢ dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* 1 (floar) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

» *¥kwargs — Other arguments.
Returns float — The fuzzy entropy as float value.
See also:

entropy_shannon (), entropy_approximate (), entropy_sample ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency-=5)
entropy nk.entropy_fuzzy (signal)
entropy

complexity fuzzymse (signal, scale='default’, dimension=2, r='default’, composite=False, re-

fined=False, *, fuzzy=True, show=False, **kwargs)
Multiscale entropy (MSE) and its Composite (CMSE), Refined (RCMSE) or fuzzy version.

Python implementations of the multiscale entropy (MSE), the composite multiscale entropy (CMSE), the refined
composite multiscale entropy (RCMSE) or their fuzzy version (FuzzyMSE, FuzzyCMSE or FuzzyRCMSE).

This function can be called either via entropy_multiscale() or complexity_mse ().
Moreover, variants can be directly accessed via complexity_cmse (), complexity_rcmse()",
complexity_fuzzymse () and complexity_fuzzyrcmse ().

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* scale (str or int or list) — A list of scale factors used for coarse graining the time series.
If ‘default’, will use range (len(signal) / (dimension + 10)) (see discus-
sion here). If ‘max’, will use all scales until half the length of the signal. If an integer,
will create a range until the specified int.

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* r (floar) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

7.13. Complexity 213

https://github.com/neuropsychology/NeuroKit/issues/75#issuecomment-583884426

NeuroKit2, Release 0.0.39

* composite (bool) — Returns the composite multiscale entropy (CMSE), more accurate
than MSE.

* refined (bool) — Returns the ‘refined” composite MSE (RCMSE; Wu, 2014)

* fuzzy (bool) — Returns the fuzzy (composite) multiscale entropy (FuzzyMSE, Fuzzy-
CMSE or FuzzyRCMSE).

* show (bool) — Show the entropy values for each scale factor.
» *¥*kwargs — Optional arguments.

Returns float — The point-estimate of multiscale entropy (MSE) as a float value corresponding to
the area under the MSE values curvee, which is essentially the sum of sample entropy values
over the range of scale factors.

See also:

entropy_shannon (), entropy_approximate (), entropy_sample (), entropy_fuzzy()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)

entropyl nk.entropy_multiscale (signal, show=True)

entropyl

entropy?2 nk.entropy_multiscale (signal, show-True, composite=True)
entropy2

entropy3 nk.entropy_multiscale (signal, show=True, refined-=True)
entropy3

References

* pyEntropy <https://github.com/nikdon/pyEntropy>"_

* Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy
and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-
H2049.

* Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals.
Physical review E, 71(2), 021906.

* Gow, B. J., Peng, C. K., Wayne, P. M., & Ahn, A. C. (2015). Multiscale entropy analysis of center-of-
pressure dynamics in human postural control: methodological considerations. Entropy, 17(12), 7926-
7947.

e Norris, P. R., Anderson, S. M., Jenkins, J. M., Williams, A. E., & Morris Jr, J. A. (2008). Heart rate
multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock, 30(1), 17-
22.

e Liu, Q., Wei, Q., Fan, S. Z., Lu, C. W, Lin, T. Y., Abbod, M. F., & Shieh, J. S. (2012). Adaptive
computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia
during surgery. Entropy, 14(6), 978-992.

complexity_fuzzyrcmse (signal, scale='default’, dimension=2, r='default’, composite=False, *, re-

fined=True, fuzzy=True, show=False, **kwargs)
Multiscale entropy (MSE) and its Composite (CMSE), Refined (RCMSE) or fuzzy version.

214 Chapter 7. Functions

https://github.com/nikdon/pyEntropy

NeuroKit2, Release 0.0.39

Python implementations of the multiscale entropy (MSE), the composite multiscale entropy (CMSE), the refined
composite multiscale entropy (RCMSE) or their fuzzy version (FuzzyMSE, FuzzyCMSE or FuzzyRCMSE).

This function can be called either via entropy_multiscale() or complexity_mse ().
Moreover, variants can be directly accessed via complexity_cmse (), complexity_rcmse()",
complexity_fuzzymse () and complexity_ fuzzyrcmse ().

Parameters

« signal (Union/list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* scale (str or int or list) — A list of scale factors used for coarse graining the time series.
If ‘default’, will use range (len (signal) / (dimension + 10)) (see discus-
sion here). If ‘max’, will use all scales until half the length of the signal. If an integer,
will create a range until the specified int.

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* 1 (floar) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

* composite (bool) — Returns the composite multiscale entropy (CMSE), more accurate
than MSE.

* refined (bool) — Returns the ‘refined” composite MSE (RCMSE; Wu, 2014)

* fuzzy (bool) — Returns the fuzzy (composite) multiscale entropy (FuzzyMSE, Fuzzy-
CMSE or FuzzyRCMSE).

* show (bool) — Show the entropy values for each scale factor.
» *¥*kwargs — Optional arguments.

Returns float — The point-estimate of multiscale entropy (MSE) as a float value corresponding to
the area under the MSE values curvee, which is essentially the sum of sample entropy values
over the range of scale factors.

See also:

entropy_shannon (), entropy_approximate (), entropy_sample (), entropy_fuzzy()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency-5)
entropyl nk.entropy_multiscale (signal, show=True)
entropyl

entropy?2 nk.entropy_multiscale (signal, show-True, composite=True)
entropy2

entropy3 nk.entropy_multiscale (signal, show=True, refined=True)
entropy3

7.13. Complexity 215

https://github.com/neuropsychology/NeuroKit/issues/75#issuecomment-583884426

NeuroKit2, Release 0.0.39

References

* pyEntropy <https://github.com/nikdon/pyEntropy>"_

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy
and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-
H2049.

Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals.
Physical review E, 71(2), 021906.

Gow, B. J., Peng, C. K., Wayne, P. M., & Ahn, A. C. (2015). Multiscale entropy analysis of center-of-
pressure dynamics in human postural control: methodological considerations. Entropy, 17(12), 7926-
7947.

Norris, P. R., Anderson, S. M., Jenkins, J. M., Williams, A. E., & Morris Jr, J. A. (2008). Heart rate
multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock, 30(1), 17-
22.

Liu, Q., Wei, Q., Fan, S. Z., Lu, C. W, Lin, T. Y., Abbod, M. F.,, & Shieh, J. S. (2012). Adaptive
computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia
during surgery. Entropy, 14(6), 978-992.

complexity_mfdfa (signal, windows='default’, overlap=True, integrate=True, order=1, * multifrac-

tal=True, g=2, show=False)

(Multifractal) Detrended Fluctuation Analysis (DFA or MFDFA)

Python implementation of Detrended Fluctuation Analysis (DFA) or Multifractal DFA of a signal. Detrended
fluctuation analysis, much like the Hurst exponent, is used to find long-term statistical dependencies in time

series.

This function can be called either via fractal_dfa () or complexity_dfa (), and its multifractal variant
can be directly accessed via fractal_mfdfa () or complexity_mfdfa ()

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

» windows (/ist) — A list containing the lengths of the windows (number of data points in
each subseries). Also referred to as ‘lag’ or ‘scale’. If ‘default’, will set it to a logarith-
mic scale (so that each window scale hase the same weight) with a minimum of 4 and
maximum of a tenth of the length (to have more than 10 windows to calculate the average
fluctuation).

* overlap (bool) — Defaults to True, where the windows will have a 50% overlap with each
other, otherwise non-overlapping windows will be used.

* integrate (bool) — It is common practice to convert the signal to a random walk (i.e.,
detrend and integrate, which corresponds to the signal ‘profile’). Note that it leads to the
flattening of the signal, which can lead to the loss of some details (see Ihlen, 2012 for
an explanation). Note that for strongly anticorrelated signals, this transformation should
be applied two times (i.e., provide np.cumsum (signal - np.mean(signal))
instead of signal).

¢ order (int) — The order of the polynoiam trend, 1 for the linear trend.

» multifractal (bool) — If true, compute Multifractal Detrended Fluctuation Analysis
(MFDFA), in which case the argument * g is taken into account.

* q (list) — The sequence of fractal exponents when multifractal=True. Must be
a sequence between -10 and 10 (nota that zero will be removed, since the code does

216

Chapter 7. Functions

https://github.com/nikdon/pyEntropy

NeuroKit2, Release 0.0.39

not converge there). Setting q = 2 (default) gives a result close to a standard DFA. For
instance, Ihlen (2012) usese = g=[-5, -3, -1, 0, 1, 3, 5]"".

¢ show (bool) — Visualise the trend between the window size and the fluctuations.

Returns dfa (float) — The DFA coefficient.

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=3, noise=0.05)

dfal nk.fractal_dfa(signal, show=True)

dfal

dfa2 nk.fractal _mfdfa(signal, g-np.arange (-3, 4), show=True)
dfaz

References

e Thlen, E. A. F. E. (2012). Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers
in physiology, 3, 141.

e Hardstone, R., Poil, S. S., Schiavone, G., Jansen, R., Nikulin, V. V., Mansvelder, H. D., & Linkenkaer-
Hansen, K. (2012). Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Frontiers
in physiology, 3, 450.

¢ nolds

¢ Youtube introduction

complexity_mse (signal, scale='default', dimension=2, r='default’, composite=False, refined=False,

fuzzy=False, show=False, **kwargs)
Multiscale entropy (MSE) and its Composite (CMSE), Refined (RCMSE) or fuzzy version.

Python implementations of the multiscale entropy (MSE), the composite multiscale entropy (CMSE), the refined
composite multiscale entropy (RCMSE) or their fuzzy version (FuzzyMSE, FuzzyCMSE or FuzzyRCMSE).

This function can be called either via entropy_multiscale() or complexity_mse ().
Moreover, variants can be directly accessed via complexity_cmse (), complexity_rcmse()",
complexity_fuzzymse () and complexity_fuzzyrcmse ().

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* scale (str or int or list) — A list of scale factors used for coarse graining the time series.
If ‘default’, will use range (len (signal) / (dimension + 10)) (see discus-
sion here). If ‘max’, will use all scales until half the length of the signal. If an integer,
will create a range until the specified int.

¢ dimension (inf) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* r (float) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

7.13. Complexity 217

https://github.com/CSchoel/nolds/
https://www.youtube.com/watch?v=o0LndP2OlUI
https://github.com/neuropsychology/NeuroKit/issues/75#issuecomment-583884426

NeuroKit2, Release 0.0.39

* composite (bool) — Returns the composite multiscale entropy (CMSE), more accurate
than MSE.

* refined (bool) — Returns the ‘refined” composite MSE (RCMSE; Wu, 2014)

* fuzzy (bool) — Returns the fuzzy (composite) multiscale entropy (FuzzyMSE, Fuzzy-
CMSE or FuzzyRCMSE).

* show (bool) — Show the entropy values for each scale factor.
» *¥*kwargs — Optional arguments.

Returns float — The point-estimate of multiscale entropy (MSE) as a float value corresponding to
the area under the MSE values curvee, which is essentially the sum of sample entropy values
over the range of scale factors.

See also:

entropy_shannon (), entropy_approximate (), entropy_sample (), entropy_fuzzy()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)

entropyl nk.entropy_multiscale (signal, show=True)

entropyl

entropy?2 nk.entropy_multiscale (signal, show-True, composite=True)
entropy2

entropy3 nk.entropy_multiscale (signal, show=True, refined-=True)
entropy3

References

* pyEntropy <https://github.com/nikdon/pyEntropy>"_

* Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy
and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-
H2049.

* Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals.
Physical review E, 71(2), 021906.

* Gow, B. J., Peng, C. K., Wayne, P. M., & Ahn, A. C. (2015). Multiscale entropy analysis of center-of-
pressure dynamics in human postural control: methodological considerations. Entropy, 17(12), 7926-
7947.

e Norris, P. R., Anderson, S. M., Jenkins, J. M., Williams, A. E., & Morris Jr, J. A. (2008). Heart rate
multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock, 30(1), 17-
22.

e Liu, Q., Wei, Q., Fan, S. Z., Lu, C. W, Lin, T. Y., Abbod, M. F., & Shieh, J. S. (2012). Adaptive
computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia
during surgery. Entropy, 14(6), 978-992.

complexity_optimize (signal, delay_max=100, delay_method=fraser1986', dimension_max=20, di-

mension_method="afnn', r_method="maxApEn’, show=False)
Find optimal complexity parameters.

218 Chapter 7. Functions

https://github.com/nikdon/pyEntropy

NeuroKit2, Release 0.0.39

Estimate optimal complexity parameters Dimension (m), Time Delay (tau) and tolerance ‘r’.
Parameters

« signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

¢ delay_max (int) — See complexity_delay ().
* delay_method (str) — See complexity_delay ().
¢ dimension_max (int) — See complexity_dimension ().
¢ dimension_method (str) — See complexity_dimension ().
¢ r_method (str) — See complexity_r ().
e show (bool) — Defaults to False.
Returns

* optimal_dimension (int) — Optimal dimension.
 optimal_delay (inf) — Optimal time delay.

See also:

complexity_dimension (), complexity delay (), complexity r ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10, frequency-=1, noise=0.01)
parameters nk.complexity_optimize (signal, show=True)
parameters

References

e Gautama, T., Mandic, D. P., & Van Hulle, M. M. (2003, April). A differential entropy based method for
determining the optimal embedding parameters of a signal. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). (Vol. 6, pp. VI-29). IEEE.

e Camplani, M., & Cannas, B. (2009). The role of the embedding dimension and time delay in time series
forecasting. IFAC Proceedings Volumes, 42(7), 316-320.

* Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1994). Reconstruction expansion as a geometry-based
framework for choosing proper delay times. Physica-Section D, 73(1), 82-98.

* Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time
series. Physica D: Nonlinear Phenomena, 110(1-2), 43-50.

e Lu, S., Chen, X., Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic selection of the
threshold value r for approximate entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-
1972.

complexity_plot (signal, delay_max=100, delay_method='fraser1986', dimension_max=20, dimen-
sion_method="afnn', r_method="maxApEn’', *, show=True)
Find optimal complexity parameters.

Estimate optimal complexity parameters Dimension (m), Time Delay (tau) and tolerance ‘r’.

7.13. Complexity 219

NeuroKit2, Release 0.0.39

Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay_max (int) — See complexity_delay ().

¢ delay_method (str) — See complexity_delay ().

¢ dimension_max (int) — See complexity_dimension ().
 dimension_method (str) — See complexity_dimension ().
* r_method (str) — See complexity_r ().

e show (bool) — Defaults to False.

 optimal_dimension (inf) — Optimal dimension.
 optimal_delay (inf) — Optimal time delay.
See also:

complexity_dimension (), complexity delay (), complexity r ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=10, frequency=1, noise=0.01)
parameters nk.complexity_optimize (signal, show=True)

parameters

References

e Gautama, T., Mandic, D. P., & Van Hulle, M. M. (2003, April). A differential entropy based method for
determining the optimal embedding parameters of a signal. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). (Vol. 6, pp. VI-29). IEEE.

e Camplani, M., & Cannas, B. (2009). The role of the embedding dimension and time delay in time series
forecasting. IFAC Proceedings Volumes, 42(7), 316-320.

* Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1994). Reconstruction expansion as a geometry-based
framework for choosing proper delay times. Physica-Section D, 73(1), 82-98.

* Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time
series. Physica D: Nonlinear Phenomena, 110(1-2), 43-50.

e Lu, S., Chen, X., Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic selection of the
threshold value r for approximate entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-
1972.

complexity_r (signal, delay=None, dimension=None, method="maxApEn’, show=False)
Estimate optimal tolerance (similarity threshold) :Parameters: * signal (Union/list, np.array, pd.Series]) — The
signal (i.e., a time series) in the form of a vector of values.

220 Chapter 7. Functions

NeuroKit2, Release 0.0.39

* delay (inf) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In practice, it is common
to have a fixed time lag (corresponding for instance to the sampling rate; Gautama, 2003), or to find a
suitable value using some algorithmic heuristics (see delay_optimal ()).

 dimension (inf) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred to as ‘order’).
Typically 2 or 3. It corresponds to the number of compared runs of lagged data. If 2, the embedding
returns an array with two columns corresponding to the original signal and its delayed (by Tau) version.

e method (str) — If ‘maxApEn’, rmax where ApEn is max will be returned. If ‘traditional’, r = 0.2 *
standard deviation of the signal will be returned.

 show (bool) — If true and method is ‘maxApEn’, will plot the ApEn values for each value of r.

Returns float — The optimal r as a similarity threshold. It corresponds to the filtering level - max
absolute difference between segments.

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency-5)

delay nk.complexity_delay (signal)

dimension nk.complexity_dimension(signal, delay-=delay)
r nk.complexity_r(signal, delay, dimension)

r

References

e Lu, S., Chen, X., Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic selection of the
threshold value r for approximate entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-
1972.

complexity_rcmse (signal, scale='default’, dimension=2, r="'default', composite=False, *, refined=True,

fuzzy=False, show=False, **kwargs)
Multiscale entropy (MSE) and its Composite (CMSE), Refined (RCMSE) or fuzzy version.

Python implementations of the multiscale entropy (MSE), the composite multiscale entropy (CMSE), the refined
composite multiscale entropy (RCMSE) or their fuzzy version (FuzzyMSE, FuzzyCMSE or FuzzyRCMSE).

This function can be called either via entropy_multiscale() or complexity_mse ().
Moreover, variants can be directly accessed via complexity_cmse (), complexity_rcmse()",
complexity_fuzzymse () and complexity_ fuzzyrcmse ().

Parameters

* signal (Union/list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* scale (str or int or list) — A list of scale factors used for coarse graining the time series.
If ‘default’, will use range (len(signal) / (dimension + 10)) (see discus-
sion here). If ‘max’, will use all scales until half the length of the signal. If an integer,
will create a range until the specified int.

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

7.13. Complexity 221

https://github.com/neuropsychology/NeuroKit/issues/75#issuecomment-583884426

NeuroKit2, Release 0.0.39

* r (float) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

e composite (bool) — Returns the composite multiscale entropy (CMSE), more accurate
than MSE.

* refined (bool) — Returns the ‘refined’ composite MSE (RCMSE; Wu, 2014)

 fuzzy (bool) — Returns the fuzzy (composite) multiscale entropy (FuzzyMSE, Fuzzy-
CMSE or FuzzyRCMSE).

 show (bool) — Show the entropy values for each scale factor.
o *¥kwargs — Optional arguments.

Returns float — The point-estimate of multiscale entropy (MSE) as a float value corresponding to
the area under the MSE values curvee, which is essentially the sum of sample entropy values
over the range of scale factors.

See also:

entropy_shannon (), entropy_approximate (), entropy_sample (), entropy_fuzzy()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)
entropyl nk.entropy_multiscale (signal, show=True)

entropyl

entropy2 nk.entropy_multiscale (signal, show=True, composite=True)
entropy?2

entropy3 nk.entropy_multiscale (signal, show=True, refined=True)
entropy3

References

e pyEntropy <https://github.com/nikdon/pyEntropy>"_

* Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy
and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-
H2049.

* Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals.
Physical review E, 71(2), 021906.

* Gow, B. J,, Peng, C. K., Wayne, P. M., & Ahn, A. C. (2015). Multiscale entropy analysis of center-of-
pressure dynamics in human postural control: methodological considerations. Entropy, 17(12), 7926-
7947.

¢ Norris, P. R., Anderson, S. M., Jenkins, J. M., Williams, A. E., & Morris Jr, J. A. (2008). Heart rate
multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock, 30(1), 17-
22.

e Liu, Q., Wei, Q., Fan, S. Z., Lu, C. W, Lin, T. Y., Abbod, M. F., & Shieh, J. S. (2012). Adaptive
computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia
during surgery. Entropy, 14(6), 978-992.

222 Chapter 7. Functions

https://github.com/nikdon/pyEntropy

NeuroKit2, Release 0.0.39

complexity_sampen (signal, delay=1, dimension=2, r="default’', **kwargs)
Sample Entropy (SampEn)

Python implementation of the sample entropy (SampEn) of a signal.
This function can be called either via entropy_sample () or complexity_sampen ().
Parameters

« signal (Union/list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* 1 (float) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

o *¥kwargs (optional) — Other arguments.
See also:

entropy_shannon (), entropy_approximate (), entropy_fuzzy ()

Returns float — The sample entropy as float value.

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)
entropy nk.entropy_sample (signal)
entropy

complexity_se (signal)
Shannon entropy (SE)

Python implementation of Shannon entropy (SE). Entropy is a measure of unpredictability of the state, or equiv-
alently, of its average information content. Shannon entropy (SE) is one of the first and most basic measure of
entropy and a foundational concept of information theory. Shannon’s entropy quantifies the amount of informa-
tion in a variable.

This function can be called either via ent ropy_shannon () or complexity_se ().

Parameters signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form
of a vector of values.

Returns float — The Shannon entropy as float value.
See also:

entropy_approximate (), entropy_sample (), entropy_fuzzy()

7.13. Complexity 223

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)
entropy nk.entropy_shannon (signal)
entropy

References

* pyEntropy <https://github.com/nikdon/pyEntropy>"_
* EntroPy <https://github.com/raphaelvallat/entropy>"_
* nolds <https://github.com/CSchoel/nolds>"_

complexity_simulate (duration=10, sampling_rate=1000, method='"ornstein’', hurst_exponent=0.5,

**kwargs)
Simulate chaotic time series.

Generates time series using the discrete approximation of the Mackey-Glass delay differential equation de-
scribed by Grassberger & Procaccia (1983).

Parameters
¢ duration (int) — Desired length of duration (s).
» sampling_rate (int) — The desired sampling rate (in Hz, i.e., samples/second).
* duration (inf) — The desired length in samples.

* method (str) — The method. can be ‘hurst’ for a (fractional) Ornstein—Uhlenbeck process
or ‘mackeyglass’ to use the Mackey-Glass equation.

* hurst_exponent (float) — Defaults to 0.5.
o **kwargs — Other arguments.

Returns array — Simulated complexity time series.

Examples

neurokit2 as nk

signall nk.complexity_simulate (duration=30, sampling_rate=100, method
"ornstein")

signal2 nk.complexity_simulate (duration=30, sampling_rate=100, method
"mackeyglass")
nk.signal_plot ([signall, signal2])

Returns x (array) — Array containing the time series.

entropy_approximate (signal, delay=1, dimension=2, r='default', corrected=False, **kwargs)
Approximate entropy (ApEn)

Python implementations of the approximate entropy (ApEn) and its corrected version (cApEn). Approximate
entropy is a technique used to quantify the amount of regularity and the unpredictability of fluctuations over
time-series data. The advantages of ApEn include lower computational demand (ApEn can be designed to work

224 Chapter 7. Functions

https://github.com/nikdon/pyEntropy
https://github.com/raphaelvallat/entropy
https://github.com/CSchoel/nolds

NeuroKit2, Release 0.0.39

for small data samples (< 50 data points) and can be applied in real time) and less sensitive to noise. However,
ApEn is heavily dependent on the record length and lacks relative consistency.

This function can be called either via ent ropy_approximate () or complexity_apen (), and the cor-
rected version via complexity_capen ().

Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

¢ delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

 dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* r (float) — Tolerance (similarity threshold). It corresponds to the filtering level - max
absolute difference between segments. If ‘default’, will be set to 0.2 times the standard
deviation of the signal (for dimension = 2).

e corrected (bool) — If true, will compute corrected ApEn (cApEn), see Porta (2007).
o **kwargs — Other arguments.
See also:

entropy_shannon (), entropy_sample (), entropy_fuzzy/()
Returns float — The approximate entropy as float value.

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)

entropyl nk.entropy_approximate (signal)

entropyl

entropy?2 nk.entropy_approximate (signal, corrected=True)
entropy?2

References

* EntroPy <https://github.com/raphaelvallat/entropy>"_

» Sabeti, M., Katebi, S., & Boostani, R. (2009). Entropy and complexity measures for EEG signal classifi-
cation of schizophrenic and control participants. Artificial intelligence in medicine, 47(3), 263-274.

e Shi, B., Zhang, Y., Yuan, C., Wang, S., & Li, P. (2017). Entropy analysis of short-term heartbeat interval
time series during regular walking. Entropy, 19(10), 568.
entropy_ fuzzy (signal, delay=1, dimension=2, r="default', **kwargs)
Fuzzy entropy (FuzzyEn)

Python implementations of the fuzzy entropy (FuzzyEn) of a signal.

7.13. Complexity 225

https://github.com/raphaelvallat/entropy

NeuroKit2, Release 0.0.39

This function can be called either via entropy_fuzzy () or complexity_ fuzzyen ().
Parameters

« signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* r (floar) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

o **kwargs — Other arguments.
Returns float — The fuzzy entropy as float value.
See also:

entropy_shannon (), entropy_approximate (), entropy_sample ()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)
entropy nk.entropy_fuzzy (signal)
entropy

entropy_multiscale (signal, scale='default', dimension=2, r="default', composite=False, refined=False,

fuzzy=False, show=False, **kwargs)
Multiscale entropy (MSE) and its Composite (CMSE), Refined (RCMSE) or fuzzy version.

Python implementations of the multiscale entropy (MSE), the composite multiscale entropy (CMSE), the refined
composite multiscale entropy (RCMSE) or their fuzzy version (FuzzyMSE, FuzzyCMSE or FuzzyRCMSE).

This function can be called either via entropy_multiscale() or complexity_mse ().
Moreover, variants can be directly accessed via complexity_cmse (), complexity_rcmse()",
complexity_fuzzymse () and complexity_ fuzzyrcmse ().

Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* scale (str or int or list) — A list of scale factors used for coarse graining the time series.
If ‘default’, will use range (len (signal) / (dimension + 10)) (see discus-
sion here). If ‘max’, will use all scales until half the length of the signal. If an integer,
will create a range until the specified int.

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

226 Chapter 7. Functions

https://github.com/neuropsychology/NeuroKit/issues/75#issuecomment-583884426

NeuroKit2, Release 0.0.39

* r (float) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

e composite (bool) — Returns the composite multiscale entropy (CMSE), more accurate
than MSE.

* refined (bool) — Returns the ‘refined’ composite MSE (RCMSE; Wu, 2014)

 fuzzy (bool) — Returns the fuzzy (composite) multiscale entropy (FuzzyMSE, Fuzzy-
CMSE or FuzzyRCMSE).

 show (bool) — Show the entropy values for each scale factor.
o *¥kwargs — Optional arguments.

Returns float — The point-estimate of multiscale entropy (MSE) as a float value corresponding to
the area under the MSE values curvee, which is essentially the sum of sample entropy values
over the range of scale factors.

See also:

entropy_shannon (), entropy_approximate (), entropy_sample (), entropy_fuzzy()

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)
entropyl nk.entropy_multiscale (signal, show=True)

entropyl

entropy2 nk.entropy_multiscale (signal, show=True, composite=True)
entropy?2

entropy3 nk.entropy_multiscale (signal, show=True, refined=True)
entropy3

References

e pyEntropy <https://github.com/nikdon/pyEntropy>"_

* Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy
and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-
H2049.

* Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals.
Physical review E, 71(2), 021906.

* Gow, B. J,, Peng, C. K., Wayne, P. M., & Ahn, A. C. (2015). Multiscale entropy analysis of center-of-
pressure dynamics in human postural control: methodological considerations. Entropy, 17(12), 7926-
7947.

¢ Norris, P. R., Anderson, S. M., Jenkins, J. M., Williams, A. E., & Morris Jr, J. A. (2008). Heart rate
multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock, 30(1), 17-
22.

e Liu, Q., Wei, Q., Fan, S. Z., Lu, C. W, Lin, T. Y., Abbod, M. F., & Shieh, J. S. (2012). Adaptive
computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia
during surgery. Entropy, 14(6), 978-992.

7.13. Complexity 227

https://github.com/nikdon/pyEntropy

NeuroKit2, Release 0.0.39

entropy_sample (signal, delay=1, dimension=2, r="default', **kwargs)
Sample Entropy (SampEn)

Python implementation of the sample entropy (SampEn) of a signal.
This function can be called either via entropy_sample () or complexity_sampen ().
Parameters

« signal (Union/list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* r (float) — Tolerance (i.e., filtering level - max absolute difference between segments). If
‘default’, will be set to 0.2 times the standard deviation of the signal (for dimension = 2).

o *¥kwargs (optional) — Other arguments.
See also:

entropy_shannon (), entropy_approximate (), entropy_fuzzy ()

Returns float — The sample entropy as float value.

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)
entropy nk.entropy_sample (signal)
entropy

entropy_shannon (signal)
Shannon entropy (SE)

Python implementation of Shannon entropy (SE). Entropy is a measure of unpredictability of the state, or equiv-
alently, of its average information content. Shannon entropy (SE) is one of the first and most basic measure of
entropy and a foundational concept of information theory. Shannon’s entropy quantifies the amount of informa-
tion in a variable.

This function can be called either via ent ropy_shannon () or complexity_se ().

Parameters signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form
of a vector of values.

Returns float — The Shannon entropy as float value.
See also:

entropy_approximate (), entropy_sample (), entropy_fuzzy()

228 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=2, frequency=5)
entropy nk.entropy_shannon (signal)
entropy

References

* pyEntropy <https://github.com/nikdon/pyEntropy>"_
* EntroPy <https://github.com/raphaelvallat/entropy>"_
* nolds <https://github.com/CSchoel/nolds>"_
fractal_correlation (signal, delay=1, dimension=2, r=64, show=False)

Correlation Dimension.

Python implementation of the Correlation Dimension D2 of a signal.

This function can be called either via fractal_correlation () or complexity_d2 ().

Parameters

« signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* delay (int) — Time delay (often denoted ‘Tau’, sometimes referred to as ‘lag’). In prac-
tice, it is common to have a fixed time lag (corresponding for instance to the sampling
rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see
delay_optimal ()).

* dimension (int) — Embedding dimension (often denoted ‘m’ or ‘d’, sometimes referred
to as ‘order’). Typically 2 or 3. It corresponds to the number of compared runs of lagged
data. If 2, the embedding returns an array with two columns corresponding to the original
signal and its delayed (by Tau) version.

* r (str or int or list) — The sequence of radiuses to test. If an integer is passed, will get an
exponential sequence ranging from 2.5% to 50% of the distance range. Methods imple-
mented in other packages can be used via setting r="'nolds"' or r='Corr_Dim'.

* show (bool) — Plot of correlation dimension if True. Defaults to False.

Returns D2 (float) — The correlation dimension D2.

Examples

neurokit2 as nk

signal nk.signal_simulate (duration-2, frequency-5)

fractall nk.fractal_correlation(signal, r="nolds", show=True)
fractall

fractal2 nk.fractal_correlation(signal, r=32, show=True)
fractal2

(continues on next page)

7.13. Complexity 229

https://github.com/nikdon/pyEntropy
https://github.com/raphaelvallat/entropy
https://github.com/CSchoel/nolds

NeuroKit2, Release 0.0.39

(continued from previous page)

signal nk.rsp_simulate (duration=120, sampling_rate=50)

fractal3 nk.fractal_correlation(signal, r="nolds", show=True)
fractal3

fractald nk.fractal_correlation(signal, r—=32, show-True)
fractal4d

References

* Bolea, J., Laguna, P., Remartinez, J. M., Rovira, E., Navarro, A., & Bailén, R. (2014). Methodological
framework for estimating the correlation dimension in HRV signals. Computational and mathematical
methods in medicine, 2014.

* Boon, M. Y., Henry, B. I, Suttle, C. M., & Dain, S. J. (2008). The correlation dimension: A useful
objective measure of the transient visual evoked potential?. Journal of vision, 8(1), 6-6.

¢ nolds

e Corr_Dim

fractal_dfa (signal, windows='default', overlap=True, integrate=True, order=1, multifractal=False, g=2,

show=False)
(Multifractal) Detrended Fluctuation Analysis (DFA or MFDFA)

Python implementation of Detrended Fluctuation Analysis (DFA) or Multifractal DFA of a signal. Detrended
fluctuation analysis, much like the Hurst exponent, is used to find long-term statistical dependencies in time
series.

This function can be called either via fractal_dfa () or complexity_dfa (), and its multifractal variant
can be directly accessed via fractal_mfdfa () or complexity_mfdfa ()

Parameters

* signal (Union/[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

* windows (/ist) — A list containing the lengths of the windows (number of data points in
each subseries). Also referred to as ‘lag’ or ‘scale’. If ‘default’, will set it to a logarith-
mic scale (so that each window scale hase the same weight) with a minimum of 4 and
maximum of a tenth of the length (to have more than 10 windows to calculate the average
fluctuation).

* overlap (bool) — Defaults to True, where the windows will have a 50% overlap with each
other, otherwise non-overlapping windows will be used.

* integrate (bool) — It is common practice to convert the signal to a random walk (i.e.,
detrend and integrate, which corresponds to the signal ‘profile’). Note that it leads to the
flattening of the signal, which can lead to the loss of some details (see Ihlen, 2012 for
an explanation). Note that for strongly anticorrelated signals, this transformation should
be applied two times (i.e., provide np.cumsum (signal - np.mean (signal))
instead of signal).

* order (inf) — The order of the polynoiam trend, 1 for the linear trend.

e multifractal (bool) — If true, compute Multifractal Detrended Fluctuation Analysis
(MFDFA), in which case the argument * g is taken into account.

* (list) — The sequence of fractal exponents when multifractal=True. Must be
a sequence between -10 and 10 (nota that zero will be removed, since the code does

230 Chapter 7. Functions

https://github.com/CSchoel/nolds/blob/master/nolds/measures.py
https://github.com/jcvasquezc/Corr_Dim

NeuroKit2, Release 0.0.39

not converge there). Setting q = 2 (default) gives a result close to a standard DFA. For
instance, Ihlen (2012) usese = g=[-5, -3, -1, 0, 1, 3, 5]"".

¢ show (bool) — Visualise the trend between the window size and the fluctuations.

Returns dfa (float) — The DFA coefficient.

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=3, noise=0.05)

dfal nk.fractal_dfa(signal, show=True)

dfal

dfa2 nk.fractal _mfdfa(signal, g-np.arange (-3, 4), show=True)
dfaz

References
e Thlen, E. A. F. E. (2012). Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers
in physiology, 3, 141.

e Hardstone, R., Poil, S. S., Schiavone, G., Jansen, R., Nikulin, V. V., Mansvelder, H. D., & Linkenkaer-
Hansen, K. (2012). Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Frontiers
in physiology, 3, 450.

¢ nolds
¢ Youtube introduction

fractal_mandelbrot (size=1000, real_range=- 2, 2, imaginary_range=- 2, 2, threshold=4, itera-

tions=25, buddha=False, show=False)
Generate a Mandelbrot (or a Buddhabrot) fractal.

Vectorized function to efficiently generate an array containing values corresponding to a Mandelbrot fractal.
Parameters
* size (int) — The size in pixels (corresponding to the width of the figure).

* real_range (fuple) — The mandelbrot set is defined within the -2, 2 complex space (the
real being the x-axis and the imaginary the y-axis). Adjusting these ranges can be used
to pan, zoom and crop the figure.

* imaginary_range (fuple) — The mandelbrot set is defined within the -2, 2 complex space
(the real being the x-axis and the imaginary the y-axis). Adjusting these ranges can be
used to pan, zoom and crop the figure.

« iterations (inf) — Number of iterations.

¢ threshold (int) — The threshold used, increasing it will increase the sharpness (not used
for buddhabrots).

¢ buddha (bool) — Whether to return a buddhabrot.
¢ show (bool) — Visualize the fratal.

Returns fig — Plot of fractal.

7.13. Complexity 231

https://github.com/CSchoel/nolds/
https://www.youtube.com/watch?v=o0LndP2OlUI

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

fractal_mandelbrot (show=True)
.)

fractal _mandelbrot (real_range=(-0.76, 0.74), imaginary_range
iterations=100, show=True)

nk.fractal_mandelbrot (real_range= (-2, 0.75), imaginary_range=(-1.25

imshow (m.T, cmap="viridis")
axis ("off")
show ()

nk.fractal_mandelbrot (size=1500, real_ range= (-2, 0.75), imaginary_range= (
1.25),

buddha-True, iterations
imshow (b.T, cmap="gray")
axis ("off")
show ()

m nk.fractal mandelbrot ()
b nk.fractal_mandelbrot (buddha True, iterations 200)

mixed m b

plt.imshow (mixed.T, cmap="gray")
plt.axis ("off")

plt.show ()

fractal_mfdfa (signal, windows='default', overlap=True, integrate=True, order=1, *, multifractal=True,

q=2, show=False)
(Multifractal) Detrended Fluctuation Analysis (DFA or MFDFA)

Python implementation of Detrended Fluctuation Analysis (DFA) or Multifractal DFA of a signal. Detrended
fluctuation analysis, much like the Hurst exponent, is used to find long-term statistical dependencies in time
series.

This function can be called either via fractal_dfa () or complexity_dfa (), and its multifractal variant
can be directly accessed via fractal_mfdfa () or complexity mfdfa ()

Parameters

* signal (Union[list, np.array, pd.Series]) — The signal (i.e., a time series) in the form of a
vector of values.

» windows (/ist) — A list containing the lengths of the windows (number of data points in
each subseries). Also referred to as ‘lag’ or ‘scale’. If ‘default’, will set it to a logarith-
mic scale (so that each window scale hase the same weight) with a minimum of 4 and
maximum of a tenth of the length (to have more than 10 windows to calculate the average
fluctuation).

232 Chapter 7. Functions

NeuroKit2, Release 0.0.39

* overlap (bool) — Defaults to True, where the windows will have a 50% overlap with each
other, otherwise non-overlapping windows will be used.

* integrate (bool) — It is common practice to convert the signal to a random walk (i.e.,
detrend and integrate, which corresponds to the signal ‘profile’). Note that it leads to the
flattening of the signal, which can lead to the loss of some details (see Ihlen, 2012 for
an explanation). Note that for strongly anticorrelated signals, this transformation should
be applied two times (i.e., provide np.cumsum (signal - np.mean (signal))
instead of signal).

e order (inf) — The order of the polynoiam trend, 1 for the linear trend.

* multifractal (bool) — If true, compute Multifractal Detrended Fluctuation Analysis
(MFDFA), in which case the argument * g is taken into account.

* q (list) — The sequence of fractal exponents when multifractal=True. Must be
a sequence between -10 and 10 (nota that zero will be removed, since the code does
not converge there). Setting q = 2 (default) gives a result close to a standard DFA. For
instance, Ihlen (2012) usese ** q=[-5, -3, -1,0, 1, 3, 5]".

¢ show (bool) — Visualise the trend between the window size and the fluctuations.

Returns dfa (float) — The DFA coefficient.

Examples

neurokit2 as nk

signal nk.signal_simulate (duration=3, noise

dfal nk.fractal_dfa(signal, show=True)

dfal

dfa2 nk.fractal_mfdfa(signal, g-np.arange (-3, 4), show=True)
dfa2

References
e Thlen, E. A. F. E. (2012). Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers
in physiology, 3, 141.

¢ Hardstone, R., Poil, S. S., Schiavone, G., Jansen, R., Nikulin, V. V., Mansvelder, H. D., & Linkenkaer-
Hansen, K. (2012). Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Frontiers
in physiology, 3, 450.

¢ nolds

¢ Youtube introduction

7.13. Complexity 233

https://github.com/CSchoel/nolds/
https://www.youtube.com/watch?v=o0LndP2OlUI

NeuroKit2, Release 0.0.39

7.14 Miscellaneous

Submodule for NeuroKit.

bio_analyze (data, sampling_rate=1000, method="auto')
Automated analysis of bio signals.

Wrapper for other bio analyze functions of electrocardiography signals (ECG), respiration signals (RSP), elec-
trodermal activity (EDA) and electromyography signals (EMG).

Parameters

* data (DataFrame) — The DataFrame containing all the processed signals, typically pro-
duced by bio_process(), ecg_process(), rsp_process(), eda_process(), or emg_process().

» sampling_rate (inf) — The sampling frequency of the signals (in Hz, i.e., sam-
ples/second). Defaults to 1000.

* method (sfr) — Can be one of ‘event-related’ for event-related analysis on epochs, or
‘interval-related’ for analysis on longer periods of data. Defaults to ‘auto’ where the
right method will be chosen based on the mean duration of the data (‘event-related’ for
duration under 10s).

Returns DataFrame — DataFrame of the analyzed bio features. See docstrings of ecg_analyze(),
rsp_analyze(), eda_analyze() and emg_analyze() for more details. Also returns Respiratory
Sinus Arrhythmia features produced by ecg_rsa() if interval-related analysis is carried out.

See also:

ecg_analyze (), rsp_analyze(),eda_analyze(),emg_analyze ()

Examples

neurokit2 as nk

data nk.data ("bio_eventrelated_100hz")

df, info nk.bio_process (ecg-data["ECG"

], rsp=data["RSP"], eda=data["EDA"],
keep=data["Photosensor"], sampling_rate=100)

events nk.events_find(data["Photosensor"], threshold_keep-'below',
event_conditions=["Negative", "Neutral",
"Neutral", "Negative"])
epochs nk.epochs_create (df, events, sampling rate-100, epochs_start
epochs_end=1.9)

nk.bio_analyze (epochs, sampling_rate=100)

data nk.data ("bio_resting_5min_100hz")

continues on next page

234 Chapter 7. Functions

NeuroKit2, Release 0.0.39

(continued from previous page)

df, info nk.bio_process (ecg=data["ECG"], rsp-data["RSP"], sampling_rate=100)

nk.bio_analyze (df, sampling_rate=100)

bio_process (ecg=None, rsp=None, eda=None, emg=None, keep=None, sampling_rate=1000)
Automated processing of bio signals.

Wrapper for other bio processing functions of electrocardiography signals (ECG), respiration signals (RSP),
electrodermal activity (EDA) and electromyography signals (EMG).

Parameters

* data (DataFrame # pylint: disable=W0611) — The DataFrame containing all the respec-
tive signals (e.g., ecg, rsp, Photosensor etc.). If provided, there is no need to fill in the
other arguments denoting the channel inputs. Defaults to None.

* ecg (Union/list, np.array, pd.Series]) — The raw ECG channel.

 rsp (Union[list, np.array, pd.Series]) — The raw RSP channel (as measured, for instance,
by a respiration belt).

* eda (Union[list, np.array, pd.Series]) — The raw EDA channel.
* emg (Union[list, np.array, pd.Series]) — The raw EMG channel.

* keep (DataFrame) — Dataframe or channels to add by concatenation to the processed
dataframe (for instance, the Photosensor channel).

» sampling_rate (inf) — The sampling frequency of the signals (in Hz, i.e., sam-
ples/second). Defaults to 1000.

Returns

¢ bio_df (DataFrame) — DataFrames of the following processed bio features: - “ECG”: the
raw signal, the cleaned signal, the heart rate, and the R peaks indexes. Also generated by
ecg_process(). - “RSP”: the raw signal, the cleaned signal, the rate, and the amplitude.
Also generated by rsp_process(). - “EDA”: the raw signal, the cleaned signal, the tonic
component, the phasic component, indexes of the SCR onsets, peaks, amplitudes, and
half-recovery times. Also generated by eda_process(). - “EMG”: the raw signal, the
cleaned signal, and amplitudes. Also generated by emg_process(). - “RSA”: Respiratory
Sinus Arrhythmia features generated by ecg_rsa(), if both ECG and RSP are provided.

* bio_info (dict) — A dictionary containing the samples of peaks, troughs, amplitudes, on-
sets, offsets, periods of activation, recovery times of the respective processed signals.

See also:

ecg_process (), rsp_process (), eda_process (), emg_process ()

7.14. Miscellaneous 235

NeuroKit2, Release 0.0.39

Example

neurokit2 as nk

ecg nk.ecg_simulate (duration=30, sampling_rate=2

(
(
(
(

rsp rsp_simulate (duration sampling_rate
eda nk.eda_simulate (duration sampling_rate s scr_number—3)
Sule} nk.emg_simulate (duration=30, sampling_rate=250, burst_number-=3)

bio_df, bio_info nk.bio_process (ecg-ecg, rsp-rsp, eda-eda, emg-emg,

mpling rate=250)

fig nk.standardize (bio_df) .plot (subplots=True)
fig

Submodule for NeuroKit.

as_vector (x)
Convert to vector.

Examples

neurokit2 as nk
as_vector (x~range (3))

as_vector (x=[0, 1, 2])
as_vector (x-np.array ([0, 21))

as_vector (x

as_vector (x=pd.Series ([0,
as_vector (x-pd.DataFrame ([0,

expspace (start, stop, num=>50, base=1)
Exponential range.

Creates a list of integer values of a given length from start to stop, spread by an exponential function.
Parameters
* start (inf) — Minimum range values.
* stop (int) — Maximum range values.
* num (int) — Number of samples to generate. Default is 50. Must be non-negative.
* base (float) —If 1, will use np.exp (), if 2 will use np . exp2 ().

Returns array — An array of integer values spread by the exponential function.

236 Chapter 7. Functions

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

nk.expspace (start=4, stop=100, num=10)
array ([4, 6 8, 12, 17, 24, 34, 49,

find_closest (closest_to, list_to_search_in, direction="both', strictly=False, return_index="False)
Find the closest number in the array from a given number x.

Parameters
* closest_to (float) — The target number(s) to find the closest of.
e list_to_search_in (/ist) — The list of values to look in.

* direction (str) — “both” for smaller or greater, “greater” for only greater numbers and
“smaller” for the closest smaller.

* strictly (bool) — False for stricly superior or inferior or True for including equal.
e return_index (bool) — If True, will return the index of the closest value in the list.

Returns closest (int) — The closest number in the array.

Example

neurokit2 as nk

find_closest (1.8,

find_closest (1.8,

find_closest ([1.8

find_ consecutive (x)
Find and group consecutive values in a list.

Creates a list of integer values of a given length from start to stop, spread by an exponential function.
Parameters x (list) — The list to look in.

Returns list — A list of tuples corresponding to groups containing all the consecutive numbers.

Examples

neurokit2 as nk

X [4, Sy l/ —E‘l 141
nk.find_consecutive (x)
[z, 3, 4, 5, (12, 13, 14,

listify (**kwargs)
Transforms arguments into lists of the same length.

7.14. Miscellaneous 237

NeuroKit2, Release 0.0.39

Examples

neurokit2 as nk

nk.listify(a
{'a': [3, 3], 'b':

238 Chapter 7. Functions

CHAPTER
EIGHT

BENCHMARKS

Contents:

8.1 Benchmarking of ECG Preprocessing Methods

We’d like to publish this study, but unfortunately we currently don’t have the time. If you want to help to make
it happen, please contact us!

8.1.1 Introduction

This work is a replication and extension of the work by Porr & Howell (2019), that compared the performance of
different popular R-peak detectors.

8.1.2 Databases
Glasgow University Database

The GUDB Database (Howell & Porr, 2018) contains ECGs from 25 subjects. Each subject was recorded performing
5 different tasks for two minutes (sitting, doing a maths test on a tablet, walking on a treadmill, running on a treadmill,
using a hand bike). The sampling rate is 250Hz for all the conditions.

The script to download and format the database using the Python package by Bernd Porr can be found .

MIT-BIH Arrhythmia Database

The MIT-BIH Arrhythmia Database (MIT-Arrhythmia; Moody & Mark, 2001) contains 48 excerpts of 30-min of
two-channel ambulatory ECG recordings sampled at 360Hz and 25 additional recordings from the same participants
including common but clinically significant arrhythmias (denoted as the MIT-Arrhythmia-x database).

The script to download and format the database using the can be found .

239

NeuroKit2, Release 0.0.39

MIT-BIH Normal Sinus Rhythm Database

This database includes 18 clean long-term ECG recordings of subjects. Due to memory limits, we only kept the second
hour of recording of each participant.

The script to download and format the database using the can be found .

Concanate them together

pandas as pd

ecgs_gudb pd.read_csv("../../data/gudb/ECGs.csv")
ecgs_mitl pd.read_csv("../../data/mit_arrhythmia/ECGs.csv")
ecgs_mit2 pd.read_csv("../../data/mit_normal/ECGs.csv")

rpeaks_gudb pd.read_csv("../../data/gudb/Rpeaks.csv")
rpeaks_mitl pd.read_csv("../../data/mit_arrhythmia/Rpeaks.csv")
rpeaks_mit2 pd.read_csv("../../data/mit_normal/Rpeaks.csv")

ecgs pd.concat ([ecgs_gudb, ecgs_mitl, ecgs_mit2], ignore_index=True)
rpeaks pd.concat ([rpeaks_gudb, rpeaks_mitl, rpeaks_mit2], ignore_index=True)

8.1.3 Study 1: Comparing Different R-Peaks Detection Algorithms

Procedure

Setup Functions

neurokit2 as nk

>f neurokit (ecg, sampling_rate):
signal, info nk.ecg_peaks (ecg, sampling_rate=sampling rate, method="neurokit")
return info["ECG_R_Peaks"]

def pantompkinsl1l985 (ecg, sampling_rate):

signal, info nk.ecg_peaks (ecg, sampling_rate-sampling_rate,
"pantompkins1985")
return info["ECG_R_Peaks"]

f hamilton2002 (ecg, sampling_rate) :

signal, info nk.ecg_peaks (ecg, sampling rate-=sampling_ rate, method="hamilton2002
")

return info["ECG_R_Peaks"]

sampling_rate) :
signal, info nk.ecg_peaks (ecg, sampling_ rate=sampling rate, method="martinez2003

return info["ECG_R_ Peaks"]

04 (ecg, sampling_rate) :
nk.ecg_peaks (ecg, sampling_ rate=sampling_ rate, method="christov2004

(continues on next page

240 Chapter 8. Benchmarks

NeuroKit2, Release 0.0.39

(continued from previous page)

return info["ECG_R_Peaks"]
)8 (ecg, sampling_ rate):
signal, info nk.ecg_peaks (ecg, sampling_ rate=sampling_rate, method="gamboa2008")

return info["ECG_R_Peaks"]

>ndi2010 (ecg, sampling_rate):
signal, info nk.ecg_peaks (ecg, sampling rate-sampling rate, method-"elgendi2010

return info["ECG_R_Peaks"]
2012 (ecg, sampling_rate):

signal, info nk.ecg_peaks (ecg, sampling rate-sampling_rate, method

zeemod2012")
sampling_rate) :
nk.ecg_peaks (ecg, sampling rate-=sampling rate, method="kalidas2017
return info["ECG_R_Peaks"]
>f rodrigues2020 (ecg, sampling_rate):
signal, info nk.ecg_peaks (ecg, sampling rate-sampling_ rate, method

"rodrigues2020")
return info["ECG_R_Peaks"]

Run the Benchmarking

Note: This takes a long time (several hours).

results []
for method [neurokit, pantompkinsl1985, hamilton2002, martinez2003, christov2004,
gamboa2008, elgendi2010, engzeemod2012, kalidas2017, rodrigues2020]:
result nk.benchmark_ecg_preprocessing (method, ecgs, rpeaks)

result ["Method"] method._ name_
results.append(result)
results pd.concat (results) .reset_index (drop=True)

results.to_csv("data_detectors.csv", index-Fa

Results

library (tidyverse)
library (easystats)
library (1lme4)

data r l.csv ("data_detectors.csv", stringsAsFactors
mutate (Database ifelse(str_det (Database, "GUDB"), p 0 (str_replace (Database,
"GUDB_", "GUDB ("), ")"), Database),

Method fct_rele (Method, "neurokit", "pantompkins1985", "hamilton2002",
"martinez2003", "christov2004", "gamboaz2008", "elgendi2010", "engzeemod2012",
"kalidas2017", "rodrigues2020"),

Participant O 0 (Database, Participant))

(continues on next page

8.1. Benchmarking of ECG Preprocessing Methods 241

NeuroKit2, Release 0.0.39

(continued from previous page)

colors c ("neurokit"="#E91E63", "pantompkinsl1985"="#£f44336", "hamilton2002"="#FF5722
", "martinez: 3"="#FF9800", "christov2004"="#FFC107", "gamboa2008"="#4CAF50",

"elgendi2010"="#009688", "engzeemod2012"="#2196F3", "kalidas2017"="#3F51B5",
"rodrigues2020"="#9C27B0")

Errors and bugs

data
mutate (Exrror C The

n (
Error "index is out of bounds for axis 0 with size 0" "index -1 out of

bounds",

Error "index 0 is out of bounds for axis 0 with size 0" "index 0 out of
bounds",

TRUE Error))

p_by (Database, Method)
mutate (n ni())
’ (Database, Method, Error)
Percentage n() unique (n))

(Error fct_relevel (Error, "None"))
(x=Error, y-Percentage, fill-Method))
r (stat="identity", position ition e2 (preserve "single"))
ap (~Database, nrow—2)
ern ()
e (axis.text.x element_text (angle 15, hijust 1))
e_fill _manual (values-colors)

Method
GUDB (hand_bike) GUDB (jogging) GUDB (maths) GUDB (sitting)
1.00 - neurokit
8;8 . pantompkins1985
© 095 P hamilton2002
g ooolll | [l L martinez2003
§ GUDB (walking) MIT-Arrhythmia MIT-Arrhythmia-x MIT-Normal christov2004
@ ggg P gamboa2008
S0 M cigendi2o10
0.25 | . engzeemod2012
0.00 — - - - L Ml alidas2017
@ » © k) @ o ©) Q@ » ©) @ » © > .
éo(\ \)Qb \}(\b 6\0.’ Z eoc é\b RS Q/\Cb Z V\oo \}(\6 \}(\6 6\% Z eoo \)Qb \)Qb Q/\Q) 2 .rodnguesZOZO
& P N & P N O O WO L O WO L
I o N @ NIENY x0 NN @
o ,O .42 & 9 @ & o ,O .42 &° o ,O .42 &~
NIt NIt NI NE Nt
o¥ o« o < [OARNEEE (OO
N QT o N QT N QT R © N QT ©
+ e o oY o oY o oY 5
& F O & F L AR & F L §
& F & 8 & R SRR
& & & &
& & & &P
NN S N N
9 o 9 9
N N N N
o o 9 o
N Ny S N
)0 ~60 -"oo ~‘"00
N AS N\
& & 3
Q \) Q
RS O RS
¥ b"’+ 6Q'+
N & &
Error

Conclusion: It seems that gamboa2008 and martinez2003 are particularly prone to errors, especially in the case

242 Chapter 8. Benchmarks

../../benchmarks/ecg_preprocessing/figures/unnamed-chunk-6-1.png

NeuroKit2, Release 0.0.39

of a noisy ECG signal. Aside from that, the other algorithms are quite resistant and bug-free.

filter (data,

Error "None")

filter (data, is.na (Score))

Computation Time

Descriptive Statistics

> (Duration (Duration) (Recording_Length Sampling_Rate))

(x-Method, y-Duration, fill-Method))
s (color=Method, group-Database),

position=p tion_7jitte ())
© s (alpha=Database),
linetype

size=3,

om_b

outlier.alpha 0)
"dotted")

n_hline (yintercept=0,
modern ()
elem

axis.text.x (angle 45, hjust 1))

(values g(0, 1, length.out=8))
al (values—-colors)
(values—colors)

ab ("Duration (seconds per data sample)")

alpha=0.2,

0.005
0.004
)
Q.
g 0.003
©
(2]
©
T 0.002
©
E
Q. %
B
< 0.001 —-1
(8]
g, ..d.b .Flﬂ
S
& I
a g i b o
T e P
& %) < > ® S A o
& F q,Q& N S S S {19\“/ N s
& & o v S &P S RS 2 2
¢ & <<§\ & & N \QQ’(\ & Q«}\b (@0
& @ N4 & & @ & * &
& &
Q
Method

£4 GUUB (hana_bike)
E3 GUDB (jogging)
E3 GUDB (maths)

E3 GUDB (sitting)

E3 GUDB (walking)
E3 MIT-Arrhythmia

E3 MIT-Arrhythmia-x
E3 MIT-Normal

Method

BH neurokit

- pantompkins1985
B hamilton2002
EElnanme22003
E3 christov2004

B3 gamboa2008

B8 elgendi2010

B3 engzeemod2012
B8 kalidas2017

BH rodrigues2020

8.1. Benchmarking of ECG Preprocessing Methods

243

../../benchmarks/ecg_preprocessing/figures/unnamed-chunk-8-1.png

NeuroKit2, Release 0.0.39

Statistical Modelling

model lmer (Duration Method (1| Database) (1

Participant),

means modelbased: :estimate_means (model)

arrange (means, Mean)

color—Method))
s (group-1), 1)
= (aes (ymin=CI_low, ymax=CI_high),
linetype="dotted")

size
size—1)
om_hline (yintercept=0,
_modern ()
(axis.text.x element_text (angle
color_manual (values—colors)
(seconds per data sample)")

15, hjust 1))

1e-03

5e-04

Duration (seconds per data sample)

0e+00

data—-data)

Method

@ neurokit

@ pantompkins1985

© hamilton2002
martinez2003
christov2004

© gamboa2008

@ elgendi2010

® engzeemod2012

@ kalidas2017

@ rodrigues2020

Method

Conclusion: It seems that gamboa2008 and neurokit are the fastest methods, followed by martinez2003,
kalidas2017, rodrigues2020 and hamilton2002. The other methods are then substantially slower.

244

Chapter 8. Benchmarks

../../benchmarks/ecg_preprocessing/figures/unnamed-chunk-9-1.png

NeuroKit2, Release 0.0.39

Accuracy

Note: The accuracy is computed as the absolute distance from the original “true” R-peaks location. As such, the

closest to zero, the better the accuracy.

Descriptive Statistics

data
e (Outlier
(§e)] 0.00¢
(Outlier

ck_outliers (Score, threshold

performance: :c

01))))

(x=-Database, y—-Score))
aes (fill-Method),
(color—-Method,

alpha-1)
alpha

outlier.alpha 0,
group=Method), size=3,
on__jitterdc
yintercept=0,
1 ()
text.x
or_manual (values—colors)
11 manual (values—-colors)

linetype="dotted")

element_text (angle 45, hijust 1))

b ("Amount of Error")

list (zscore

stats

0.15 r
Method
0-10 T B8 neurokit
_ B8 pantompkins1985
2 B3 hamilton2002
% 0.05 B3 martinez2003
- E3 christov2004
3 ES gamboa2008
g B8 elgendi2010
l B engzeemod2012
H B8 kalidas2017
B rodrigues2020
T i
i
. Y
) &g\ _ \Q@ & ,\\(@ . \@ R ~<5+ @
9 @ 8 A & & S
Y% > & \% ©) N s
& S Q 4 3 & N &
o8 S & Ko & X N
L o o N\ &
o
Database
8.1. Benchmarking of ECG Preprocessing Methods 245

../../benchmarks/ecg_preprocessing/figures/unnamed-chunk-10-1.png

NeuroKit2, Release 0.0.39

Statistical Modelling

model lmer (Score Method (1 | Database) (1 |Participant), data-data)

means modelbased: :¢ imate_means (model)

arrange (means, abs (Mean))

s (x~Method, y-Mean, color-Method))
s (group=1), size=1)
e (aes (ymin=CI_low, ymax=CI_high), size=1)
e (yintercept=0, linetype="dotted")
>rn ()
axis.text.x element_text (angle 15, hijust 1))
olor_manual (values=colors)
o ("Amount of Error")

0.09 Method

@ neurokit

@ pantompkins1985

© hamilton2002

0.06 martinez2003
christov2004

© gamboa2008

@ elgendi2010

® engzeemod2012

0.03 @ kalidas2017

@ rodrigues2020

Amount of Error

0 . 0 0 ..
& “ % > ® Q A o
& & Si o QQ Q° N\ i) v
N N ¥ v 2 Vv U R Vv Vv
o o Q 4 Q 2 S % %
< & Y @ xO o & o RS @
& N & & » &
\O@ ‘\’b & Q) Q’b) 03]/@ N\ &06
& &
<Q
Method

Conclusion: It seems that neurokit, kalidas2017 and christov2004 the most accurate algo-
rithms to detect R-peaks. This pattern of results differs a bit from Porr & Howell (2019) that outlines
engzeemod2012,elgendi2010, kalidas2017 as the most accurate and christov2004, hamilton2002

246 Chapter 8. Benchmarks

../../benchmarks/ecg_preprocessing/figures/unnamed-chunk-11-1.png

NeuroKit2, Release 0.0.39

and pantompkins1985 as the worse. Discrepancies could be due to the differences in data and analysis, as here
we used more databases and modelled them by respecting their hierarchical structure using mixed models.

Conclusion

Based on the accuracy / execution time criterion, it seems like neurokit is the best R-peak detection method,
followed by kalidas2017.

8.1.4 Study 2: Normalization

Procedure

Setup Functions

neurokit2 as nk

def none (ecg, sampling_rate):

signal, info nk.ecg_peaks (ecg, sampling rate-sampling rate, method-"neurokit")
return info["ECG_R_Peaks"]

cf mean_detrend(ecg, sampling_rate) :
[SYele} nk.signal_detrend(ecg, order=0)
signal, info nk.ecg_peaks (ecg, sampling rate-sampling_rate, method="neurokit")
return info["ECG_R_Peaks"]

ize (ecg, sampling_rate):
nk.standardize (ecqg)
signal, info nk.ecg_peaks (ecg, sampling_rate-sampling rate, method="neurokit")
return info["ECG_R_Peaks"]

Run the Benchmarking

Note: This takes a long time (several hours).

results []

for method [none, mean_detrend, standardize]:
result nk.benchmark_ecg_preprocessing (method, ecgs, rpeaks)
result ["Method"] method._ _name_
results.append(result)

results pd.concat (results) .reset_index (drop=True)

results.to_csv("data_normalization.csv", index-False)

8.1. Benchmarking of ECG Preprocessing Methods 247

NeuroKit2, Release 0.0.39

Results

library (tidyverse)
library (easystats)
library (1lme4)

data r l.csv ("data_normalization.csv", stringsAsFactors FALSE)
mutate (Database ifel str_detect (Database, "GUDB"), p 20 (str_r e (Database,
"GUDB_", "GUDB ("), ")"), Database),
Method fct_re 1 (Method, "none", "mean_removal", "standardization"),
Participant pastel (Database, Participant))
filter (Exrror "None")
filter(!is.na (Score))

colors c("none"="#607D8RBR", "mean_removal"="#673AB7", "standardization"="#00BCD4")

Accuracy

Descriptive Statistics

data data
mutate (Outlier performance: :c outliers (Score, threshold list (zscore stats
gnorm (p] 0.0¢ 01))))
filter (Outlier 0)

x=Database, y—-Score))
. ses (fill=Method), outlier.alpha 0, alpha-1)
s (color=Method, group-Method), size=3, alpha
n_jitte e())
(yintercept=0, linetype="dotted")
rn ()

e (axis.text.x element_text (angle 45, hijust 1))

r_manual (values—=colors)
11 _manual (values—-colors)

of Error")

248 Chapter 8. Benchmarks

NeuroKit2, Release 0.0.39

0.05

0.04

0.03

0.02 Method
: none

mean_removal

0.01 III ES standardization

Amount of Error

Database

Statistical Modelling

model lmer (Score Method (1 |Database) (1| Participant), data-data)

modelbased 3 tras model)

means modelbased

(x=Method, y-Mean, color-Method))
group-1), size-1)
aes (ymin=CI_low, ymax=CI_high), size=1)

element_text (angle 45, hijust 1))

or_manual (values—colors)

(continues on next page

8.1. Benchmarking of ECG Preprocessing Methods 249

../../benchmarks/ecg_preprocessing/figures/unnamed-chunk-15-1.png

NeuroKit2, Release 0.0.39

(continued from previous page)

ylab ("Amount of Error")

0.010
S
5 Method
© none
< 0.008 @ L 4 L 4 *
5 @ mean_removal
g @ standardization
<

0.006

N
o°® O\\rzy &
N N P
g &
&7 &
N 5@
Method

Conclusion

No significant benefits added by normalization for the neurokit method.

8.2 References

250 Chapter 8. Benchmarks

../../benchmarks/ecg_preprocessing/figures/unnamed-chunk-16-1.png

CHAPTER
NINE

DATASETS

NeuroKit includes datasets that can be used for testing. These datasets are not downloaded automatically with the
package (to avoid increasing its weight), but can be downloaded via the nk.data() function.

9.1 ECG (1000 hz)

Type Frequency | Signals
Single-subject | 1000 Hz ECG

data nk.data (dataset="ecg_1000hz")

9.2 ECG - pandas (3000 hz)

Type Frequency | Signals
Single-subject | 3000 Hz ECG

data nk.data (dataset="ecg_3000_pandas")

9.3 Event-related (4 events)

Type Frequency | Signals
Single-subject with events | 100 Hz ECG, EDA, RSP, Photosensor

data nk.data (dataset—="bio_eventrelated_100hz")

 Used in the following docstrings:

bio_analyze()

ecg_analyze()

ecg_eventrelated()

ecg_rsa()

251

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.bio.bio_analyze
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg.ecg_analyze
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg.ecg_eventrelated
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg.ecg_rsa

NeuroKit2, Release 0.0.39

— ecg_rsp()

— eda_analyze()

— eda_eventrelated()
— eda_phasic()

— epochs_create()

— epochs_plot()

— epochs_to_df()

— rsp_analyze()

— rsp_eventrelated()

signal_power()
* Used in the following examples:

— Event-related Analysis

— Analyze Respiratory Rate Variability (RRV)

9.4 Resting state (5 min)

dat

Type

Frequency

Signals

Single-subject resting state | 100 Hz

ECG, PPG, RSP

a nk.data (dataset="bio_resting 5min_100hz")

* Used in the following docstrings:

bio_analyze()

ecg_analyze()

ecg_intervalrelated()

rsp_analyze()

rsp_intervalrelated()
* Used in the following examples:

— Interval-related Analysis

9.5 Resting state (8 min)

dat

Type

Frequency | Signals

Single-subject resting state

100 Hz ECG, RSP, EDA, Photosensor

a nk.data (dataset="bio_resting 8min_100hz")

* Used in the following docstrings:

252

Chapter 9. Datasets

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg.ecg_rsp
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.eda.eda_analyze
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.eda.eda_eventrelated
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.eda.eda_phasic
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.epochs.epochs_create
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.epochs.epochs_plot
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.epochs.epochs_to_df
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.rsp.rsp_analyze
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.rsp.rsp_eventrelated
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.signal.signal_power
https://neurokit2.readthedocs.io/en/dev/examples/eventrelated.html
https://neurokit2.readthedocs.io/en/dev/examples/rrv.html
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.bio_analyze
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_analyze
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_intervalrelated
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.rsp_analyze
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.rsp_intervalrelated
https://neurokit2.readthedocs.io/en/dev/examples/intervalrelated.html

NeuroKit2, Release 0.0.39

— eda_analyze()

— eda_intervalrelated()

9.5. Resting state (8 min) 253

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.eda_analyze
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.eda_intervalrelated

NeuroKit2, Release 0.0.39

254 Chapter 9. Datasets

CHAPTER
TEN

CONTRIBUTING

We’re glad that you are considering joining the team and the community of open-science. You can find step-by-step
guides below that will show you how to make a perfect first contribution.

All people are very much welcome to contribute to code, documentation, testing and suggestions.

This package aims at being beginner-friendly. Even if you’re new to this open-source way of life, new to coding and
GitHub stuff, we encourage you to try submitting pull requests (PRs).

e “I'd like to help, but I'm not good enough with programming yet”

It’s alright, don’t worry! You can always dig in the code, in the documentation or tests. There are always some typos
to fix, some docs to improve, some details to add, some code lines to document, some tests to add. .. Just explore the
code structure, find where functions are located, where documentation is written, where tests are made, and see what
you can fix. Even the smaller PRs are appreciated.

e “I'don’t know how to code at all :(“
You can still contribute to the documentation by creating tutorials, help and info!
* “I'd like to help, but I don’t know where to start”

You can look around the issue section to find some features / ideas / bugs to start working on. You can also open a new
issue just to say that you’re there, interested in helping out. We might have some ideas adapted to your skills.

* “I'm not sure if my suggestion or idea is worthwhile”

Enough with the impostor syndrome! All suggestions and opinions are good, and even if it’s just a thought or so, it’s
always good to receive feedback.

o “Why should I waste my time with this? Do I get any credit?”

Software contributions are getting more and more valued in the academic world, so it is a good time to collaborate
with us! All contributors will be added within the authors list. We’re also very keen on including them to eventual
academic publications.

Anyway, starting is the most important! You will then enter a whole new world, a new fantastic point of view... So
fork this repo, do some changes and submit them. We will then work together to make the best out of it

Contributing Guides:

255

https://github.com/neuropsychology/NeuroKit/tree/master/docs
https://github.com/neuropsychology/NeuroKit/issues
https://neurokit2.readthedocs.io/en/latest/credits.html

NeuroKit2, Release 0.0.39

10.1 Understanding NeuroKit

Hint: Spotted a typo? Would like to add something or make a correction? Join us by contributing see our guides).

Let’s start by reviewing some basic coding principles that might help you get familiar with NeuroKit

If you are reading this, it could be because you don’t feel comfortable enough with Python and NeuroKit (yet), and
you impatiently want to get to know it in order to start looking at your data.

“Tous les chemins meénent 2 Rome” (all roads lead to Rome)

Let me start by saying that there are multiple ways you’ll be able to access the documentation in order
to get to know different functions, follow examples and other tutorials. So keep in mind that you will
eventually find your own workflow, and that these tricks are shared simply to help you get to know your
options.

10.1.1 1. readthedocs

You probably already saw the README file that shows up on NeuroKit’s Github home page (right after the list of
directories). It contains a brief overview of the project, some examples and figures. But, most importantly, there are
the links that will take you to the Documentation.

Documentation basically means code explanations, references and examples.

In the Documentation section of the README, you’ll find links to the readthedocs website like this one :

Hint: Did you know that you can access the documentation website using the rt £d domain name https://
neurokit2.rtfd.io/, which stands for READ THE F**** DOCS

And a link to the API (or Application Program Interface, containing the list of functions) like this one:

All the info you will see on that webpage is rendered directly from the code, meaning that the website reads the code
and generates a HTML page from it. That’s why it’s important to structure your code in a standard manner (You
can learn how to contribute here).

The API is organized by types of signals. You’ll find that each function has a description, and that most of them refer
to peer-reviewed papers or other GitHub repositories. Also, for each function, parameters are described in order.
Some of them will take many different options and all of them should be described as well.

If the options are not explained, they should be.

It’s not your fault you don’t understand. That’s why we need you to contribute.

256 Chapter 10. Contributing

https://neurokit2.readthedocs.io/en/latest/contributing/index.html
https://github.com/neuropsychology/NeuroKit/blob/master/README.rst
https://neurokit2.readthedocs.io/en/latest/?badge=latest
https://neurokit2.readthedocs.io/en/latest/?badge=latest
https://neurokit2.readthedocs.io/en/latest/functions.html
https://neurokit2.readthedocs.io/en/latest/functions.html
https://neurokit2.readthedocs.io/en/latest/contributing.html

NeuroKit2, Release 0.0.39

Example

In the ECG section, the ecg_findpeaks function takes 4 parameters. One of them is method: each method refers to a
peer-reviewed paper that published a peak detection algorithm. You can also see what the function returns and what
type of data has been returned (integers and floating point numbers, strings, etc). Additionally, you can find related
functions in the See also part. An small example of the function should also be found. You can copy paste it in your
Python kernel, or in a Jupyter Notebook, to see what it does.

10.1.2 2. The code on Github

Now that you’re familiar with readthedocs website, let’s go back to the repo. What you have to keep in mind is that
everything you saw in the previous section is in the Github repository. The website pages, the lines that you are
currently reading, are stored in the repository, which is then automatically uploaded to the website. Everything is
cross-referenced, everything relates to the core which can be found in the repo. If you got here, you probably already
know that a repository is like a tree containing different branches or directories that eventually lead you to a script, in
which you can find a function.

Example

Ready for inception ? let’s find the location of the file you’re currently reading. Go under docs and find it by
yourself. .. it should be straight-forward.

Hint: As you can see, there are several sections (see the Table of Content on the left), and we are in the tutorials
section. So you might want to look into the tutorials folder :)

See! It’s super handy because you can visit the scripts without downloading it. Github also renders Jupyter Notebook
quite well, so you can not only see the script, but also figures and markdown sections where the coder discusses results.

10.1.3 3. The code on YOUR machine

Now, you’re probably telling yourself :
If I want to use these functions, they should be somewhere on my computer!

For that, I encourage you to visit the installation page if you didn’t already. Once Python is installed, its default
pathway should be :

Python directory
Windows

e C:\Users\<username>\anaconda3\

(if the directory doesn’t match, just search for the folder name anaconda3 or miniconda3.

10.1. Understanding NeuroKit 257

https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_findpeaks
https://github.com/neuropsychology/NeuroKit
https://neurokit2.readthedocs.io/en/latest/installation.html

NeuroKit2, Release 0.0.39

Mac

e /Users/<username>/anaconda3

Or, if you’re using WinPython it should be in the folder of its installation (e.g., C:\Users\<username>\
Desktop\WPy—-3710\).

Linux users should know that already

Environment and NeuroKit directory

NeuroKit, along with all the other packages, are located in the python directory in the site-package folder (itself
in the Lib folder). It should be located under the environment where you installed it (if you didn’t do it already, set a
computing environment. Otherwise, you can run into problems when running your code). The directory should look
like this:

e C:\Users\<username>\anaconda3\envs\<yourenv>\lib\site-package\neurokit2
Or, if you’re using WinPython:

e C:\Users\<username>\Desktop\WPy—-3710\python-3.7.1.amd64\Lib\site-package\
neurokit?

Example

Take the ECG again :

From the specified directory, I can note that the different folders are arranged in the same way as in the readthedocs
website.

Let’s say I want to go back to the same function ecg_findpeaks(): I'd click on ecg folder, and from there I can see the
source code for the function under ; ecg_findpeaks.py.

10.2 Contributing guide

NeuroKit2 welcomes everyone to contribute to code, documentation, testing and suggestions.

This package aims at being beginner-friendly. And if you’re not yet familiar with how contribution can be done to
open-source packages, or with how to use GitHub, this guide is for you!

Let’s dive right into it!

10.2.1 NeuroKit’s style

Structure and code
» The NeuroKit package is organized into submodules, such as ecg, signal, statistics, etc. New functions should
be created within at the appropriate places.

» The API (the functions) should be consistent, with functions starting with a prefix (plot_, ecg_, eda_, etc.) so
that the user can easily find them by typing the “intuitive” prefix.

* Authors of code contribution are invited to follow the PEP 8 style sheet to write some nice (and readable) python.

» That being said, human readability should always be favoured over anything else. Ideally, we would like the
code in NeuroKit to be understandable even by non-programmers.

258 Chapter 10. Contributing

https://winpython.github.io/
https://winpython.github.io/
https://www.python.org/dev/peps/pep-0008/

NeuroKit2, Release 0.0.39

e Contrary to Python recommendations, we prefer some nicely nested loops, rather than complex one-liners
[“that” for s if hin i for t in range(“don’t”) if “understand” is False].

¢ The maximum line length is 100 characters

¢ Please document and comment your code, so that the purpose of each step (or code line) is stated in a clear and
understandable way.

* Don’t forget to add tests and documentation (a description, examples, etc.) to your functions.

Run code checks

Once you’re satisfied by the code you’ve written, you will need to run some checks to make sure it is “standardized”.
You will need to open the command line and install the following packages:

pip install isort black docformatter flake8 pylint

Now, navigate to the folder where your script is by typing cd C:\the\folder\of\my\file. Once you there,
you can run the following commands:

isort myfile.py ~1 120 balanced multi-line 3 lines between types I lines
after imports 2 trailing comma

black myfile.py line-length 120

docformatter myfile.py wrap summaries 120 wrap descriptions 113 blank place

flake8 myfile.py max-line-length=127 max-complexity=10 ignore E303,C901,E203,
W503

pylint myfile.py max-line-length=127 load plugins=pylint.extensions.docparams
load plugins=pylint.extensions.docstyle variable naming style=any argument
naming style=any reports=n suggestion -mode=y disable=E303 disable=R0913
disable=R0801 disable=C0114 disable=E203 disable=E0401 disable=W9006
disable=C0330 disable=R0914 disable=R0912 disable=R0915 disable=W0102
disable=W0511 disable=C1801 disable=C0111 disable=R1705 disable=R1720
disable=C0301 disable=C0415 disable=C0103 disable=C0302 disable=R1716
disable=W0632 disable=E1136 extension pkg whitelist=numpy

The first three commands will make some modifications to your code so that it is nicely formatted, while the two last
will run some checks to detect any additional issues. Please try to fix them!

PS: If you want to check the whole package (i.e., all the files of the package), run:

isort neurokit2 -1 120 balanced multi-line 3 lines between types 1 lines
after -imports 2 trailing comma skip neurokit2/complexity/__init__ .py recursive
black neurokit2 line-length 120
docformatter neurokit2 wrap-summaries 120 wrap -descriptions 113 blank
place recursive
flake8 neurokit2 exclude neurokit2/__init__ .py max-line-length=127 max
complexity=10 ignore E303,C901,E203,W503
pylint neurokit2 max-line-length=127 load plugins=pylint.extensions.docparams
load plugins=pylint.extensions.docstyle variable naming style=any argument

naming style=any reports=n suggestion mode=y disable=E303 disable-R0913
disable=R0801 disable=C0114 disable=E203 disable=E0401 disable=W9006
disable=C0330 disable=R0914 disable=R0912 disable=R0915 disable=W0102
disable-W0511 disable-C1801 disable-C0111 disable-R1705 disable-R1720
disable=C0301 disable=C0415 disable=C0103 disable=C0302 disable=R1716
disable=W0632 disable=E1136 extension pkg whitelist=numpy exit-zero

10.2. Contributing guide 259

NeuroKit2, Release 0.0.39

Avoid Semantic Errors

Most errors detected by our code checks can be easily automated with isort, black, and docformatter. This
leaves us with the semantic errors picked up by pylint, the last style check, which often have to be fixed manually.
Below is a list of the most common semantic errors that occur when writing code/documentation, so before you commit
any changes, do make sure you have fixed these.

Documentation
* Missing function arguments in Parameters and Returns.

¢ In internal functions, missing Returns section detected only if Parameters is documented but is not fol-
lowed by returns documentation.

* Failure to detect documentation of arguments when they are done simultaneously in one line:

a, b, ¢, discard, n, sampling_ rate, x0 : int

will result in a pylint error like a, b, ¢, discard, n, sampling_rate, x0" missing in
parameter documentation (missing-param-doc) sodo document each argument separately.

* Argument name different from documentation
Code

* Unused arguments

* Unused variables

e Merge if arguments, for example: if isinstance(ecg, (list, pd.Series)) rather than if
isinstance(ecg, list) or isinstance(ecg, pd.Series)

Development workflow

The NeuroKit GitHub repository has two main branches, master and the dev. The typical workflow is to work and
make changes on the dev branch. This dev branch has a pull request (PR) opened to track individual commits
(changes). And every now and then (when a sufficient number of changes have been made), the dev branch is merged
into master, leading to an update of the version number and an upload to PyPi.

The important thing is that you should not directly make changes on the master branch, because master is usually
behind dev (which means for instance, maybe the the things you are changing on master have already been changed
on dev). The master should be a stable, tested branch, and dev is the place to experiment.

This is a summary of the typical workflow for contributing using GitHub (a detailed guide is available below):
1. Download GitHub Desktop and follow the small tutorial that it proposes

2. Fork the NeuroKit repository (this can be done on the GitHub website page by clicking on the Fork button), and
clone it using GitHub Desktop to your local computer (it will copy over the whole repo from GitHub to your
local machine)

In GitHub Desktop, switch to the dev branch. You are now on the dev branch (of your own fork)

From there, create a new branch, called for example “bugfix-functionX” or “feature-readEEG” or “typofix”
Make some changes and push them (this will update your fork)

Create a pull request (PR) from your fork to the “origin” (the original repo) dev branch

This will trigger automated checks that you can explore and fix

® N AW

Wait for it to be merged into dev, and later see it being merged into master

260 Chapter 10. Contributing

https://desktop.github.com/

NeuroKit2, Release 0.0.39

10.2.2 How to use GitHub to contribute

Step 1: Fork it
A fork is a copy of a repository. Working with the fork allows you to freely experiment with changes without affecting
the original project.

Hit the Fork button in the top right corner of the page and in a few seconds, you will have a copy of the repository in
your own GitHub account.

neuropsychology / NeuroKit @sponsor | | @ Unwatch~ | 7 | drunstar 29 | Y¥Fork 10

<> Code Issues 15 Pull requests 1 Actions Projects 0 Wiki Security Insights Settings

Now, that is the remote copy of the project. The next step is to make a local copy in your computer.

While you can explore Git to manage your Github developments, we recommend downloading Github Desktop in-
stead. It makes the process way easier and more straightforward.

Step 2: Clone it

Cloning allows you to make a local copy of any repositories on Github.

Go to File menu, click Clone Repository and since you have forked Neurokit2, you should be able to find it easily
under Your repositories.

10.2. Contributing guide 261

https://desktop.github.com/

NeuroKit2, Release 0.0.39

New repository... Ctrl+N

New branch... Ctrl+Shift+N

Add local repository... Ctrl+O

Clone repository... Ctrl+Shift+0

Options... Ctrl+,

Bxit

Choose the local path of where you want to save your local copy and as simple as that, you have a working repository
in your computer.

Step 3: Find it and fix it
And here is where the fun begins. You can start contributing by fixing a bug (or even a typo in the code) that has been
annoying you. Or you can go to the issue section to hunt for issues that you can address.

For example, here, as I tried to run the example in ecg_fixpeaks() file, I ran into a bug! A typo error!

Fix it and hit the save button! That’s one contribution I made to the package!

To save the changes you made (e.g. the typo that was just fixed) to your local copy of the repository, the next step is
to commit it.

262 Chapter 10. Contributing

https://github.com/neuropsychology/NeuroKit/issues/

NeuroKit2, Release 0.0.39

Step 4: Commit it and push it

In your Github Desktop, you will now find the changes that you made highlighted in red (removed) or green (added).

The first thing that you have to do is to switch from the default - Commit to Master to Commit to dev. Always commit
to your dev branch as it is the branch with the latest changes. Then give the changes you made a good and succinct
title and hit the Commit button.

¢) File Edit View Repository Branch Help

to g5 Current branch . o Fetchorigin

“ master Last

Branches Pull requests

Filter New branch

Default branch

+/ master 3 days ago
Other branches

{9 origin/dev

¥ upstream/dev

¥ upstream/master

f Choose a branch to merge into master

Committing allows your changes to be saved in your local copy of the repository and in order to have the changes
saved in your remote copy, you have to push the commit that you just made.

Step 4: Create pull request

The last step to make your contribution official is to create a pull request.

10.2. Contributing guide 263

NeuroKit2, Release 0.0.39

% Tam-Pham / NeuroKit

forked from neuropsychology/NeuroKit

<> Code Pull requests 0 Actions Projects 0 Wiki

NeuroKit2: The Python Toolbox for Neurophysiological Signal Processing

Manage topics

D 819 commits ¥ 2 branches 7 0 packages

@ Watch~ | 0 wStar | 0 Y Fork 11
Security Insights Settings
https://neurokit2.readthedocs.io/ Edit
O 2 releases 22 9 contributors s MIT

I Branch: dev v ” New pull request

This branch is 40 commits behind neuropsychology:dev.

& DominiqueMakowski bio_process is in da game

Create new file = Upload files = Find file Clone or download v

i Pull request [Compare

Latest commit 1e1dfsc 3 days ago

B _github sanitize input 17 days ago
m .idea revert last month
I data Create example_bio_100hz.csv 28 days ago
i docs clean unused images 3 days ago
J— W _neurokit? bio process is in da game: davs aq.

Go to your remote repository on Github page, the New Pull Request button is located right on top of the folders. Do
remember to change your branch to dev since your commits were pushed to the dev branch previously.

And now, all that is left is for the maintainers of the package to review your work and they can either request additional

changes or merge it to the original repository.

Step 5: Let’s do it

Let’s do it for real! If you have a particular feature in mind that you would want to add, we would recommend first
opening an issue to let us know, so we can eventually guide you and give you some advice. And if you don’t know
where to start or what to do, then read our ideas for first contributions. Good luck

10.2.3 Useful reads

For instance, one way of starting to contribute could be to improve this file, fix typos, clarify things, add resources

links etc. :)
* Understanding the GitHub flow
* How to create a Pull Request

* Why and How to Contribute

10.2.4 What’s next?

¢ Ideas for first contributions

264

Chapter 10. Contributing

https://github.com/neuropsychology/NeuroKit/issues
https://neurokit2.readthedocs.io/en/latest/contributing/first_contribution.html
https://guides.github.com/introduction/flow/
https://www.earthdatascience.org/courses/intro-to-earth-data-science/git-github/github-collaboration/how-to-submit-pull-requests-on-github/
https://github.com/jonschlinkert/idiomatic-contributing/
https://neurokit2.readthedocs.io/en/latest/contributing/first_contribution.html

NeuroKit2, Release 0.0.39

10.3 Ideas for first contributions

Hint: Spotted a typo? Would like to add something or make a correction? Join us by contributing (see our guides).

Now that you’re familiar with how to use GitHub, you’re ready to get your hands dirty and contribute to open-science?
But you’re not sure where to start or what to do? We got you covered!

In this guide, we will discuss the two best types of contributions for beginners, as they are easy to make, super useful
and safe (you cannot break the package).

10.3.1 Look for “good first contribution” issues

If you know how to code a bit, you can check out the issues that have been flagged as good for first contribution. This
means that they are issue or features ideas that we believe are accessible to beginners. If you’re interested, do not
hesitate to comment on these issues to know more, have more info or ask for guidance! We’ll be really happy to help
in any way we can .

10.3.2 Improving documentation

One of the easiest thing is to improve, complete or fix the documentation for functions. For instance the ecg_simulate()
function has a documentation with a general description, a description of the arguments, some example etc. As you’'ve
surely noticed, sometimes more details would be needed, some typos are present, or some references could be added.

The documentation for functions is located alongside the function definition (the code of the function). If you’ve read
understanding NeuroKit, you know that the code of the ecg_simulate() function is here. And as you can see, just below
the function name, there is a big string (starting and ending with “””’) containing the documentation.

This thing is called the docstring.

If you modify it here, then it will be updated automatically on the website!

10.3.3 Adding tests

Tests are super important for programmers to make sure that the changes that we make at one location don’t create
unexpected changes at another place.

Adding them is a good first issue for new contributors, as it takes little time, doesn’t require advanced programming
skills and is a good occasion to discover functions and how they work.

By clicking on the “coverage” badge under the logo on the README page, then on the “neurokit2” folder button at
the bottom, you can see the breakdown of testing coverage for each submodules (folders), and if you click on one of
them, the coverage for each individual file/function (example here).

This percentage of coverage needs be improved

The common approach is to identify functions, methods or arguments that are not tested, and then try to write a small
test to cover them (i.e., a small self-contained piece of code that will run through a given portion of code and which
output is tested (e.g., assert x == 3) and depends on the correct functioning of that code), and then add this test to the
appropriate testing file.

For instance, let’s imagine the following function:

10.3. lIdeas for first contributions 265

https://neurokit2.readthedocs.io/en/latest/contributing/index.html
https://neurokit2.readthedocs.io/en/latest/contributing/contributing.html#how-to-use-github-to-contribute
https://github.com/neuropsychology/NeuroKit/labels/good%20first%20contribution%20%3Asun_with_face%3A
https://neurokit2.readthedocs.io/en/latest/functions.html#neurokit2.ecg_simulate
https://neurokit2.readthedocs.io/en/latest/contributing/understanding.html
https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_simulate.py
https://codecov.io/gh/neuropsychology/NeuroKit
https://codecov.io/gh/neuropsychology/NeuroKit/tree/master/neurokit2
https://codecov.io/gh/neuropsychology/NeuroKit/tree/master/neurokit2/stats
https://github.com/neuropsychology/NeuroKit/tree/master/tests

NeuroKit2, Release 0.0.39

sfunction (x, method="great"):
if method "great":

Z X
else:

Z
return z

In order to test that function, I have to write some code that “runs through” it and put in a function which name starts
with rest_*, for instance:

domsfunction () :

output domsfunction (1)
't output 4

This will go through the function, which default method is “great”, therefore adds 3 to the input (here 1), and so the
result should be 4. And the test makes sure that it is 4. However, we also need to add a second test to cover the other
method of the function (when method /= “great”), for instance:

~st_domsfunction () :

output domsfunction (1)
assert output 1

output domsfunction (1, method="whatever")
assert isinstance (output, int)

I could have written assert output == 5, however, I decided instead to check the type of the output (whether it is an
integer). That’s the thing with testing, it requires to be creative, but also in more complex cases, to be clever about
what and how to test. But it’s an interesting challenge

You can see examples of tests in the existing test files.

10.3.4 Adding examples and tutorials

How to write

The documentation that is on the website is automatically built by the hosting website, readthedocs, from reStructured
Text (RST) files (a syntax similar to markdown) or from jupyter notebooks (.ipynb) Notebooks are preferred if your
example contains code and images.

Where to add the files

These documentation files that we need to write are located in the /docs/ folder. For instance, if you want to add an
example, you need to create a new file, for instance myexample.rst, in the docs/examples/ folder.

If you want to add images to an .rst file, best is to put them in the /docs/img/ folder and to reference their link.

However, in order for this file to be easily accessible from the website, you also need to add it to the table of content
located in the index file (just add the name of the file without the extension).

Do not hesitate to ask for more info by creating an issue!

266 Chapter 10. Contributing

https://github.com/neuropsychology/NeuroKit/tree/master/tests
https://neurokit2.readthedocs.io/en/latest/
https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html
https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html
https://jupyter.org/
https://github.com/neuropsychology/NeuroKit/tree/master/docs
https://github.com/neuropsychology/NeuroKit/tree/master/docs/img
https://github.com/neuropsychology/NeuroKit/blob/master/docs/examples/index.rst
https://github.com/neuropsychology/NeuroKit/issues

n

neurokit?2
neurokit?2
neurokit?2
neurokit?2
neurokit?2
neurokit?2
neurokit?2
neurokit?2
neurokit?2
neurokit2
neurokit?2
neurokit?2
neurokit?2
neurokit?2
neurokit?2

.bio, 234
.complexity, 202
.data, 190
.ecqg, 107
.eda, 146
.eeq, 163
.emg, 157
.epochs, 191
.events, 187
.hrv, 128
.misc, 236
.ppg, 124
.rsp, 135
.signal, 165
.stats, 194

PYTHON MODULE INDEX

267

NeuroKit2, Release 0.0.39

268 Python Module Index

A

as_vector () (in module neurokit2.misc), 236

B

bio_analyze () (in module neurokit2.bio), 234
bio_process () (in module neurokit2.bio), 235

C

complexity_apen () (in module neu-
rokit2.complexity), 202

complexity_capen () (in module neu-
rokit2.complexity), 203

complexity_cmse () (in module neu-

rokit2.complexity), 204
complexity_d2 () (in module neurokit2.complexity),

205

complexity_delay () (in module neu-
rokit2.complexity), 206

complexity_dfa() (in module neu-
rokit2.complexity), 208

complexity_dimension () (in module neu-
rokit2.complexity), 209

complexity_embedding () (in module neu-
rokit2.complexity), 210

complexity_fuzzycmse () (in module neu-
rokit2.complexity), 211

complexity_fuzzyen () (in module neu-
rokit2.complexity), 212

complexity_fuzzymse () (in module neu-
rokit2.complexity), 213

complexity_fuzzyrcmse () (in module neu-
rokit2.complexity), 214

complexity_mfdfa () (in module neu-
rokit2.complexity), 216

complexity_mse () (in module neu-
rokit2.complexity), 217

complexity_optimize () (in module neu-
rokit2.complexity), 218

complexity_plot () (in module neu-

rokit2.complexity), 219
complexity_r () (in module neurokit2.complexity),
220

INDEX

complexity_rcmse () (in module neu-
rokit2.complexity), 221
complexity_sampen () (in module neu-

rokit2.complexity), 222

complexity_se () (in module neurokit2.complexity),
223

complexity_simulate () (in
rokit2.complexity), 224

cor () (in module neurokit2.stats), 194

D

data () (in module neurokit2.data), 190
density () (in module neurokit2.stats), 194
distance () (in module neurokit2.stats), 195

E

ecg_analyze () (in module neurokit2.ecg), 107
ecg_clean () (in module neurokit2.ecg), 108
ecg_delineate () (in module neurokit2.ecg), 109
ecg_eventrelated () (in module neurokit2.ecg),
110
ecg_findpeaks () (in module neurokit2.ecg), 111
ecg_intervalrelated() (in module neu-
rokit2.ecg), 113
ecg_peaks () (in module neurokit2.ecg), 114
ecg_phase () (in module neurokit2.ecg), 115
ecg_plot () (in module neurokit2.ecg), 116
ecg_process () (in module neurokit2.ecg), 116
ecg_quality () (in module neurokit2.ecg), 118
ecg_rate () (in module neurokit2.ecg), 118
ecg_rsa () (in module neurokit2.ecg), 119
ecg_rsp () (in module neurokit2.ecg), 121
ecg_segment () (in module neurokit2.ecg), 122
ecg_simulate () (in module neurokit2.ecg), 123
eda_analyze () (in module neurokit2.eda), 146
eda_autocor () (in module neurokit2.eda), 147
eda_changepoints () (in module neurokit2.eda),
147
eda_clean () (in module neurokit2.eda), 148
eda_eventrelated () (in module neurokit2.eda),
148
eda_findpeaks () (in module neurokit2.eda), 150

module neu-

269

NeuroKit2, Release 0.0.39

eda_fixpeaks () (in module neurokit2.eda), 151
eda_intervalrelated() (in module
rokit2.eda), 151
eda_peaks () (in module neurokit2.eda), 152
eda_phasic () (in module neurokit2.eda), 153
eda_plot () (in module neurokit2.eda), 154
eda_process () (in module neurokit2.eda), 155
eda_simulate () (in module neurokit2.eda), 156
emg_activation () (in module neurokit2.emg), 157
emg_amplitude () (in module neurokit2.emg), 158
emg_analyze () (in module neurokit2.emg), 158
emg_clean () (in module neurokit2.emg), 159
emg_eventrelated () (in module neurokit2.emg),
160
emg_intervalrelated()
rokit2.emg), 160
emg_plot () (in module neurokit2.emg), 161
emg_process () (in module neurokit2.emg), 161
emg_simulate () (in module neurokit2.emg), 162
entropy_approximate () (in module
rokit2.complexity), 224
entropy_fuzzy () (in module neurokit2.complexity),
225

neu-

(in module neu-

neu-

entropy_multiscale () (in module neu-
rokit2.complexity), 226

entropy_sample () (in module neu-
rokit2.complexity), 227

entropy_shannon () (in module neu-

rokit2.complexity), 228
epochs_create () (in module neurokit2.epochs), 191
epochs_plot () (in module neurokit2.epochs), 192
epochs_to_array () (in module neurokit2.epochs),
193
epochs_to_df () (in module neurokit2.epochs), 193
events_find () (in module neurokit2.events), 187
events_plot () (in module neurokit2.events), 188
events_to_mne () (in module neurokit2.events), 189
expspace () (in module neurokit2.misc), 236

F

find_closest () (in module neurokit2.misc), 237
find_consecutive () (in module neurokit2.misc),
237
fit_error () (in module neurokit2.stats), 195
fit_loess () (in module neurokit2.stats), 196
fit_mixture () (in module neurokit2.stats), 197
fit_mse () (in module neurokit2.stats), 197
fit_polynomial () (in module neurokit2.stats), 197
fit_polynomial_findorder () (in module neu-
rokit2.stats), 198
fit_r2 () (in module neurokit2.stats), 198
fit_rmse () (in module neurokit2.stats), 198
fractal correlation|() (in module
rokit2.complexity), 229

neu-

fractal_dfa ()
230

fractal_mandelbrot ()
rokit2.complexity), 231

fractal_mfdfa () (in module neurokit2.complexity),
232

(in module neurokit2.complexity),

(in module neu-

Fl

hdi () (in module neurokit2.stats), 198

hrv () (in module neurokit2.hrv), 128
hrv_frequency () (in module neurokit2.hrv), 129
hrv_nonlinear () (in module neurokit2.hrv), 130
hrv_time () (in module neurokit2.hrv), 133

L

listify () (in module neurokit2.misc), 237

M

mad () (in module neurokit2.stats), 199
mne_channel_add () (in module neurokit2.eeg), 163
mne_channel_extract () (in module
rokit2.eeg), 164
module
neurokit?2
neurokit?2

neu-

.bio, 234
.complexity, 202
.data, 190
.ecgqg, 107
.eda, 146
.eeq, 163
.emg, 157
.epochs, 191
.events, 187
.hrv, 128
.misc, 236
.ppg, 124
.rsp, 135
neurokit2.signal, 165
neurokit2.stats, 194
mutual_information ()
rokit2.stats), 200

neurokit?2
neurokit?2
neurokit?2
neurokit2
neurokit?2
neurokit?2
neurokit?2
neurokit?2
neurokit2
neurokit?2
neurokit?2

(in module neu-

N

neurokit2.bio
module, 234
neurokit2.complexity
module, 202
neurokit2.data
module, 190
neurokit2.ecqg
module, 107
neurokit2.eda
module, 146
neurokit2.eeqg
module, 163

270

Index

NeuroKit2, Release 0.0.39

neurokit?2.emg
module, 157
neurokit2.epochs
module, 191
neurokit2.events
module, 187
neurokit2.hrv
module, 128
neurokit2.misc
module, 236
neurokit?2.ppg
module, 124
neurokit2.rsp
module, 135
neurokit2.signal
module, 165
neurokit2.stats
module, 194

F)

ppg_clean () (in module neurokit2.ppg), 124
ppg_findpeaks () (in module neurokit2.ppg), 124
ppg_plot () (in module neurokit2.ppg), 125
ppg_process () (in module neurokit2.ppg), 126
ppg_rate () (in module neurokit2.ppg), 126
ppg_simulate () (in module neurokit2.ppg), 127

R

read_acgknowledge () (in module neurokit2.data),
190
rescale () (in module neurokit2.stats), 200
rsp_amplitude () (in module neurokit2.rsp), 135
rsp_analyze () (in module neurokit2.rsp), 135
rsp_clean () (in module neurokit2.rsp), 136
rsp_eventrelated () (in module neurokit2.rsp),
137
rsp_findpeaks () (in module neurokit2.rsp), 138
rsp_~fixpeaks () (in module neurokit2.rsp), 139
rsp_intervalrelated() (in module
rokit2.rsp), 139
rsp_peaks () (in module neurokit2.rsp), 140
rsp_phase () (in module neurokit2.rsp), 141
rsp_plot () (in module neurokit2.rsp), 142
rsp_process () (in module neurokit2.rsp), 142
rsp_rate () (in module neurokit2.rsp), 143
rsp_rrv () (in module neurokit2.rsp), 144
rsp_simulate () (in module neurokit2.rsp), 145

S

signal_autocor ()
165

signal_binarize () (in module neurokit2.signal),
165

neu-

(in module neurokit2.signal),

signal_changepoints () (in module
rokit2.signal), 166

signal_decompose () (in module neurokit2.signal),

neu-

166

signal_detrend () (in module neurokit2.signal),
167

signal_distort () (in module neurokit2.signal),
169

signal_filter () (in module neurokit2.signal), 170
signal_findpeaks () (in module neurokit2.signal),

172

signal_fixpeaks () (in module neurokit2.signal),
173

signal_formatpeaks () (in module neu-
rokit2.signal), 175

signal_interpolate () (in module neu-

rokit2.signal), 175
signal_merge () (in module neurokit2.signal), 176
signal_period () (in module neurokit2.signal), 176
signal_phase () (in module neurokit2.signal), 177
signal_plot () (in module neurokit2.signal), 178
signal_power () (in module neurokit2.signal), 178
signal_psd () (in module neurokit2.signal), 179
signal_rate () (in module neurokit2.signal), 180
signal_recompose () (in module neurokit2.signal),

181

signal_resample () (in module neurokit2.signal),
182

signal_simulate () (in module neurokit2.signal),
184

signal_smooth () (in module neurokit2.signal), 184
signal_synchrony () (in module neurokit2.signal),
185
signal_zerocrossings () (in
rokit2.signal), 186
standardize () (in module neurokit2.stats), 201
summary_plot () (in module neurokit2.stats), 201

module neu-

Index

271

	Introduction
	Quick Example
	Installation
	Contributing
	Documentation
	Citation
	Physiological Data Preprocessing
	Physiological Data Analysis
	Miscellaneous
	Popularity
	Notes

	Authors
	Core team
	Contributors

	Installation
	1. Python
	2. NeuroKit

	Get Started
	Get familiar with Python in 10 minutes
	Where to start

	Examples
	Try the examples in your browser
	1. Analysis Paradigm
	2. Biosignal Processing
	3. Heart rate and heart cycles
	4. Electrodermal activity
	5. Respiration rate and respiration cycles
	6. Muscle activity
	Simulate Artificial Physiological Signals
	Customize your Processing Pipeline
	Event-related Analysis
	Interval-related Analysis
	Analyze Electrodermal Activity (EDA)
	Analyze Respiratory Rate Variability (RRV)
	ECG-Derived Respiration (EDR) Analysis
	Extract and Visualize Individual Heartbeats
	How to create epochs
	Complexity Analysis of Physiological Signals
	Analyze Electrooculography EOG data (eye blinks, saccades, etc.)
	Fit a function to a signal

	Resources
	Recording good quality signals
	What software for physiological signal processing
	Additional Resources

	Functions
	ECG
	PPG
	HRV
	RSP
	EDA
	EMG
	EEG
	Signal Processing
	Events
	Data
	Epochs
	Statistics
	Complexity
	Miscellaneous

	Benchmarks
	Benchmarking of ECG Preprocessing Methods
	References

	Datasets
	ECG (1000 hz)
	ECG - pandas (3000 hz)
	Event-related (4 events)
	Resting state (5 min)
	Resting state (8 min)

	Contributing
	Understanding NeuroKit
	Contributing guide
	Ideas for first contributions

	Python Module Index
	Index

